Spaces:
Runtime error
Runtime error
dung-vpt-uney
commited on
Commit
·
fe542a6
1
Parent(s):
b02dcfa
Deploy latest CoRGI Gradio demo
Browse files- README.md +7 -0
- corgi/__pycache__/gradio_app.cpython-313.pyc +0 -0
- corgi/__pycache__/pipeline.cpython-313.pyc +0 -0
- corgi/__pycache__/qwen_client.cpython-313.pyc +0 -0
- corgi/__pycache__/types.cpython-313.pyc +0 -0
- corgi/cli.py +1 -1
- corgi/gradio_app.py +173 -57
- corgi/pipeline.py +38 -4
- corgi/qwen_client.py +24 -1
- corgi/types.py +26 -0
README.md
CHANGED
|
@@ -40,3 +40,10 @@ python app.py
|
|
| 40 |
- The Space queues requests sequentially on `cpu-basic` (ZeroGPU) hardware.
|
| 41 |
- Set the `CORGI_QWEN_MODEL` environment variable to try another Qwen3-VL checkpoint (for example, `Qwen/Qwen3-VL-4B-Instruct`).
|
| 42 |
- `max_steps` and `max_regions` sliders control how many reasoning steps and ROI candidates the model returns.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
- The Space queues requests sequentially on `cpu-basic` (ZeroGPU) hardware.
|
| 41 |
- Set the `CORGI_QWEN_MODEL` environment variable to try another Qwen3-VL checkpoint (for example, `Qwen/Qwen3-VL-4B-Instruct`).
|
| 42 |
- `max_steps` and `max_regions` sliders control how many reasoning steps and ROI candidates the model returns.
|
| 43 |
+
|
| 44 |
+
## UI Overview
|
| 45 |
+
|
| 46 |
+
- **Chain of Thought**: Displays the structured reasoning steps with vision flags, alongside the exact prompt/response sent to the model.
|
| 47 |
+
- **ROI Extraction**: Shows the source image with every grounded bounding box plus per-evidence crops, and lists the prompts used for each verification step.
|
| 48 |
+
- **Evidence Descriptions**: Summarises each grounded region (bbox, description, confidence) with the associated ROI prompts.
|
| 49 |
+
- **Answer Synthesis**: Highlights the final answer, supporting context, and the synthesis prompt/response pair.
|
corgi/__pycache__/gradio_app.cpython-313.pyc
CHANGED
|
Binary files a/corgi/__pycache__/gradio_app.cpython-313.pyc and b/corgi/__pycache__/gradio_app.cpython-313.pyc differ
|
|
|
corgi/__pycache__/pipeline.cpython-313.pyc
CHANGED
|
Binary files a/corgi/__pycache__/pipeline.cpython-313.pyc and b/corgi/__pycache__/pipeline.cpython-313.pyc differ
|
|
|
corgi/__pycache__/qwen_client.cpython-313.pyc
CHANGED
|
Binary files a/corgi/__pycache__/qwen_client.cpython-313.pyc and b/corgi/__pycache__/qwen_client.cpython-313.pyc differ
|
|
|
corgi/__pycache__/types.cpython-313.pyc
CHANGED
|
Binary files a/corgi/__pycache__/types.cpython-313.pyc and b/corgi/__pycache__/types.cpython-313.pyc differ
|
|
|
corgi/cli.py
CHANGED
|
@@ -12,7 +12,7 @@ from .pipeline import CoRGIPipeline
|
|
| 12 |
from .qwen_client import Qwen3VLClient, QwenGenerationConfig
|
| 13 |
from .types import GroundedEvidence, ReasoningStep
|
| 14 |
|
| 15 |
-
DEFAULT_MODEL_ID = "Qwen/Qwen3-VL-
|
| 16 |
|
| 17 |
|
| 18 |
def build_parser() -> argparse.ArgumentParser:
|
|
|
|
| 12 |
from .qwen_client import Qwen3VLClient, QwenGenerationConfig
|
| 13 |
from .types import GroundedEvidence, ReasoningStep
|
| 14 |
|
| 15 |
+
DEFAULT_MODEL_ID = "Qwen/Qwen3-VL-8B-Thinking"
|
| 16 |
|
| 17 |
|
| 18 |
def build_parser() -> argparse.ArgumentParser:
|
corgi/gradio_app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
import logging
|
|
|
|
| 4 |
from dataclasses import dataclass
|
| 5 |
from typing import Callable, Dict, List, Optional, Tuple
|
| 6 |
|
|
@@ -14,7 +15,7 @@ from PIL import Image, ImageDraw
|
|
| 14 |
from .cli import DEFAULT_MODEL_ID
|
| 15 |
from .pipeline import CoRGIPipeline, PipelineResult
|
| 16 |
from .qwen_client import Qwen3VLClient, QwenGenerationConfig
|
| 17 |
-
from .types import GroundedEvidence
|
| 18 |
|
| 19 |
|
| 20 |
@dataclass
|
|
@@ -129,52 +130,143 @@ def _annotate_evidence_image(
|
|
| 129 |
return annotated
|
| 130 |
|
| 131 |
|
| 132 |
-
def _empty_ui_payload(message: str
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
def _prepare_ui_payload(
|
| 141 |
image: Image.Image,
|
| 142 |
result: PipelineResult,
|
| 143 |
max_slots: int = MAX_UI_STEPS,
|
| 144 |
-
) ->
|
| 145 |
answer_text = f"### Final Answer\n{result.answer or '(no answer returned)'}"
|
| 146 |
-
evidences_by_step = _group_evidence_by_step(result.evidence)
|
| 147 |
-
|
| 148 |
-
step_markdowns: List[str] = []
|
| 149 |
-
step_galleries: List[List[Tuple[Image.Image, str]]] = []
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
else:
|
| 164 |
-
lines.append("- No visual evidence returned for this step.")
|
| 165 |
-
step_markdowns.append("\n".join(lines))
|
| 166 |
-
|
| 167 |
-
gallery_entries: List[Tuple[Image.Image, str]] = []
|
| 168 |
-
for idx, evidence in enumerate(evidences):
|
| 169 |
-
color = EVIDENCE_COLORS[idx % len(EVIDENCE_COLORS)]
|
| 170 |
-
annotated = _annotate_evidence_image(image, evidence, color)
|
| 171 |
-
gallery_entries.append((annotated, _format_evidence_caption(evidence)))
|
| 172 |
-
step_galleries.append(gallery_entries)
|
| 173 |
else:
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
if spaces is not None:
|
|
@@ -248,7 +340,7 @@ def _run_pipeline(
|
|
| 248 |
max_steps: int,
|
| 249 |
max_regions: int,
|
| 250 |
model_id: Optional[str],
|
| 251 |
-
) -> tuple[PipelineState,
|
| 252 |
target_model = (model_id or DEFAULT_MODEL_ID).strip() or DEFAULT_MODEL_ID
|
| 253 |
cached_pipeline = _PIPELINE_CACHE.get(target_model)
|
| 254 |
base_state = state or PipelineState(model_id=target_model, pipeline=cached_pipeline)
|
|
@@ -325,19 +417,25 @@ def build_demo(
|
|
| 325 |
|
| 326 |
with gr.Column(scale=1, min_width=320):
|
| 327 |
answer_markdown = gr.Markdown(value="### Final Answer\nUpload an image and ask a question to begin.")
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
| 335 |
columns=2,
|
| 336 |
height=280,
|
| 337 |
allow_preview=True,
|
| 338 |
)
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
def _on_submit(state_data, image, question, model_id, max_steps, max_regions):
|
| 343 |
pipeline_state = state_data if isinstance(state_data, PipelineState) else None
|
|
@@ -349,15 +447,33 @@ def build_demo(
|
|
| 349 |
int(max_regions),
|
| 350 |
model_id if model_id else None,
|
| 351 |
)
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
run_button.click(
|
| 363 |
fn=_on_submit,
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
import logging
|
| 4 |
+
import itertools
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from typing import Callable, Dict, List, Optional, Tuple
|
| 7 |
|
|
|
|
| 15 |
from .cli import DEFAULT_MODEL_ID
|
| 16 |
from .pipeline import CoRGIPipeline, PipelineResult
|
| 17 |
from .qwen_client import Qwen3VLClient, QwenGenerationConfig
|
| 18 |
+
from .types import GroundedEvidence, PromptLog
|
| 19 |
|
| 20 |
|
| 21 |
@dataclass
|
|
|
|
| 130 |
return annotated
|
| 131 |
|
| 132 |
|
| 133 |
+
def _empty_ui_payload(message: str) -> Dict[str, object]:
|
| 134 |
+
placeholder_prompt = f"```text\n{message}\n```"
|
| 135 |
+
return {
|
| 136 |
+
"answer_markdown": f"### Final Answer\n{message}",
|
| 137 |
+
"chain_markdown": message,
|
| 138 |
+
"chain_prompt": placeholder_prompt,
|
| 139 |
+
"roi_overview": None,
|
| 140 |
+
"roi_gallery": [],
|
| 141 |
+
"roi_prompt": placeholder_prompt,
|
| 142 |
+
"evidence_markdown": message,
|
| 143 |
+
"evidence_prompt": placeholder_prompt,
|
| 144 |
+
"answer_process_markdown": message,
|
| 145 |
+
"answer_prompt": placeholder_prompt,
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def _annotate_overview_image(image: Image.Image, evidences: List[GroundedEvidence]) -> Optional[Image.Image]:
|
| 150 |
+
if not evidences:
|
| 151 |
+
return None
|
| 152 |
+
base = image.copy().convert("RGBA")
|
| 153 |
+
overlay = Image.new("RGBA", base.size, (0, 0, 0, 0))
|
| 154 |
+
draw = ImageDraw.Draw(overlay)
|
| 155 |
+
width, height = base.size
|
| 156 |
+
|
| 157 |
+
step_colors: Dict[int, Tuple[int, int, int]] = {}
|
| 158 |
+
color_cycle = itertools.cycle(EVIDENCE_COLORS)
|
| 159 |
+
for ev in evidences:
|
| 160 |
+
color = step_colors.setdefault(ev.step_index, next(color_cycle))
|
| 161 |
+
x1 = max(0, min(int(ev.bbox[0] * width), width - 1))
|
| 162 |
+
y1 = max(0, min(int(ev.bbox[1] * height), height - 1))
|
| 163 |
+
x2 = max(0, min(int(ev.bbox[2] * width), width - 1))
|
| 164 |
+
y2 = max(0, min(int(ev.bbox[3] * height), height - 1))
|
| 165 |
+
x1, x2 = sorted((x1, x2))
|
| 166 |
+
y1, y2 = sorted((y1, y2))
|
| 167 |
+
outline_width = max(2, int(min(width, height) * 0.005))
|
| 168 |
+
rgba_color = color + (255,)
|
| 169 |
+
fill_color = color + (60,)
|
| 170 |
+
draw.rectangle([x1, y1, x2, y2], outline=rgba_color, width=outline_width)
|
| 171 |
+
label = f"S{ev.step_index}"
|
| 172 |
+
draw.text((x1 + 4, y1 + 4), label, fill=rgba_color)
|
| 173 |
+
|
| 174 |
+
annotated = Image.alpha_composite(base, overlay).convert("RGB")
|
| 175 |
+
if max(annotated.size) > GALLERY_MAX_DIM:
|
| 176 |
+
annotated.thumbnail((GALLERY_MAX_DIM, GALLERY_MAX_DIM), _THUMBNAIL_RESAMPLE)
|
| 177 |
+
return annotated
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def _format_prompt_markdown(log: Optional[PromptLog], title: str) -> str:
|
| 181 |
+
if log is None:
|
| 182 |
+
return f"**{title} Prompt**\n_Prompt unavailable._"
|
| 183 |
+
lines = [f"**{title} Prompt**", "```text", log.prompt, "```"]
|
| 184 |
+
if log.response:
|
| 185 |
+
lines.extend(["**Model Response**", "```text", log.response, "```"])
|
| 186 |
+
return "\n".join(lines)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def _format_grounding_prompts(logs: List[PromptLog]) -> str:
|
| 190 |
+
if not logs:
|
| 191 |
+
return "_No ROI prompts available._"
|
| 192 |
+
blocks: List[str] = []
|
| 193 |
+
for log in logs:
|
| 194 |
+
heading = f"#### Step {log.step_index}" if log.step_index is not None else "#### ROI Prompt"
|
| 195 |
+
sections = [heading, "**Prompt**", "```text", log.prompt, "```"]
|
| 196 |
+
if log.response:
|
| 197 |
+
sections.extend(["**Model Response**", "```text", log.response, "```"])
|
| 198 |
+
blocks.append("\n".join(sections))
|
| 199 |
+
return "\n\n".join(blocks)
|
| 200 |
|
| 201 |
|
| 202 |
def _prepare_ui_payload(
|
| 203 |
image: Image.Image,
|
| 204 |
result: PipelineResult,
|
| 205 |
max_slots: int = MAX_UI_STEPS,
|
| 206 |
+
) -> Dict[str, object]:
|
| 207 |
answer_text = f"### Final Answer\n{result.answer or '(no answer returned)'}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
step_lines: List[str] = []
|
| 210 |
+
evidences_by_step = _group_evidence_by_step(result.evidence)
|
| 211 |
+
for step in result.steps[:max_slots]:
|
| 212 |
+
lines = [
|
| 213 |
+
f"**Step {step.index}:** {step.statement}",
|
| 214 |
+
f"- Needs vision: {'yes' if step.needs_vision else 'no'}",
|
| 215 |
+
]
|
| 216 |
+
if step.reason:
|
| 217 |
+
lines.append(f"- Reason: {step.reason}")
|
| 218 |
+
evs = evidences_by_step.get(step.index, [])
|
| 219 |
+
if evs:
|
| 220 |
+
lines.append(f"- Visual evidence items: {len(evs)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
else:
|
| 222 |
+
lines.append("- No visual evidence returned for this step.")
|
| 223 |
+
step_lines.append("\n".join(lines))
|
| 224 |
+
if len(result.steps) > max_slots:
|
| 225 |
+
step_lines.append(f"_Only the first {max_slots} steps are shown._")
|
| 226 |
+
chain_markdown = "\n\n".join(step_lines) if step_lines else "_No reasoning steps returned._"
|
| 227 |
+
|
| 228 |
+
roi_overview = _annotate_overview_image(image, result.evidence)
|
| 229 |
+
aggregated_gallery: List[Tuple[Image.Image, str]] = []
|
| 230 |
+
for idx, evidence in enumerate(result.evidence):
|
| 231 |
+
color = EVIDENCE_COLORS[idx % len(EVIDENCE_COLORS)]
|
| 232 |
+
annotated = _annotate_evidence_image(image, evidence, color)
|
| 233 |
+
aggregated_gallery.append((annotated, _format_evidence_caption(evidence)))
|
| 234 |
+
|
| 235 |
+
evidence_blocks: List[str] = []
|
| 236 |
+
for idx, evidence in enumerate(result.evidence, start=1):
|
| 237 |
+
bbox = ", ".join(f"{coord:.2f}" for coord in evidence.bbox)
|
| 238 |
+
desc = evidence.description or "(no description)"
|
| 239 |
+
conf = f"Confidence: {evidence.confidence:.2f}" if evidence.confidence is not None else "Confidence: n/a"
|
| 240 |
+
evidence_blocks.append(
|
| 241 |
+
f"**Evidence {idx} — Step {evidence.step_index}**\n- {desc}\n- {conf}\n- BBox: ({bbox})"
|
| 242 |
+
)
|
| 243 |
+
evidence_markdown = "\n\n".join(evidence_blocks) if evidence_blocks else "_No visual evidence collected._"
|
| 244 |
+
|
| 245 |
+
reasoning_prompt_md = _format_prompt_markdown(result.reasoning_log, "Reasoning")
|
| 246 |
+
roi_prompt_md = _format_grounding_prompts(result.grounding_logs)
|
| 247 |
+
evidence_prompt_md = roi_prompt_md if result.grounding_logs else "_No ROI prompts available._"
|
| 248 |
+
answer_prompt_md = _format_prompt_markdown(result.answer_log, "Answer Synthesis")
|
| 249 |
+
|
| 250 |
+
answer_process_lines = [
|
| 251 |
+
f"**Question:** {result.question}",
|
| 252 |
+
f"**Final Answer:** {result.answer or '(no answer returned)'}",
|
| 253 |
+
f"**Steps considered:** {len(result.steps)}",
|
| 254 |
+
f"**Visual evidence items:** {len(result.evidence)}",
|
| 255 |
+
]
|
| 256 |
+
answer_process_markdown = "\n".join(answer_process_lines)
|
| 257 |
+
|
| 258 |
+
return {
|
| 259 |
+
"answer_markdown": answer_text,
|
| 260 |
+
"chain_markdown": chain_markdown,
|
| 261 |
+
"chain_prompt": reasoning_prompt_md,
|
| 262 |
+
"roi_overview": roi_overview,
|
| 263 |
+
"roi_gallery": aggregated_gallery,
|
| 264 |
+
"roi_prompt": roi_prompt_md,
|
| 265 |
+
"evidence_markdown": evidence_markdown,
|
| 266 |
+
"evidence_prompt": evidence_prompt_md,
|
| 267 |
+
"answer_process_markdown": answer_process_markdown,
|
| 268 |
+
"answer_prompt": answer_prompt_md,
|
| 269 |
+
}
|
| 270 |
|
| 271 |
|
| 272 |
if spaces is not None:
|
|
|
|
| 340 |
max_steps: int,
|
| 341 |
max_regions: int,
|
| 342 |
model_id: Optional[str],
|
| 343 |
+
) -> tuple[PipelineState, Dict[str, object]]:
|
| 344 |
target_model = (model_id or DEFAULT_MODEL_ID).strip() or DEFAULT_MODEL_ID
|
| 345 |
cached_pipeline = _PIPELINE_CACHE.get(target_model)
|
| 346 |
base_state = state or PipelineState(model_id=target_model, pipeline=cached_pipeline)
|
|
|
|
| 417 |
|
| 418 |
with gr.Column(scale=1, min_width=320):
|
| 419 |
answer_markdown = gr.Markdown(value="### Final Answer\nUpload an image and ask a question to begin.")
|
| 420 |
+
with gr.Tabs():
|
| 421 |
+
with gr.Tab("Chain of Thought"):
|
| 422 |
+
chain_markdown = gr.Markdown("_No reasoning steps yet._")
|
| 423 |
+
chain_prompt = gr.Markdown("```text\nAwaiting prompt...\n```")
|
| 424 |
+
with gr.Tab("ROI Extraction"):
|
| 425 |
+
roi_overview_image = gr.Image(label="Annotated image", value=None)
|
| 426 |
+
roi_gallery = gr.Gallery(
|
| 427 |
+
label="Evidence gallery",
|
| 428 |
columns=2,
|
| 429 |
height=280,
|
| 430 |
allow_preview=True,
|
| 431 |
)
|
| 432 |
+
roi_prompt_markdown = gr.Markdown("```text\nAwaiting ROI prompts...\n```")
|
| 433 |
+
with gr.Tab("Evidence Descriptions"):
|
| 434 |
+
evidence_markdown = gr.Markdown("_No visual evidence collected._")
|
| 435 |
+
evidence_prompt_markdown = gr.Markdown("```text\nAwaiting ROI prompts...\n```")
|
| 436 |
+
with gr.Tab("Answer Synthesis"):
|
| 437 |
+
answer_process_markdown = gr.Markdown("_No answer generated yet._")
|
| 438 |
+
answer_prompt_markdown = gr.Markdown("```text\nAwaiting answer prompt...\n```")
|
| 439 |
|
| 440 |
def _on_submit(state_data, image, question, model_id, max_steps, max_regions):
|
| 441 |
pipeline_state = state_data if isinstance(state_data, PipelineState) else None
|
|
|
|
| 447 |
int(max_regions),
|
| 448 |
model_id if model_id else None,
|
| 449 |
)
|
| 450 |
+
return [
|
| 451 |
+
new_state,
|
| 452 |
+
payload["answer_markdown"],
|
| 453 |
+
payload["chain_markdown"],
|
| 454 |
+
payload["chain_prompt"],
|
| 455 |
+
payload["roi_overview"],
|
| 456 |
+
payload["roi_gallery"],
|
| 457 |
+
payload["roi_prompt"],
|
| 458 |
+
payload["evidence_markdown"],
|
| 459 |
+
payload["evidence_prompt"],
|
| 460 |
+
payload["answer_process_markdown"],
|
| 461 |
+
payload["answer_prompt"],
|
| 462 |
+
]
|
| 463 |
+
|
| 464 |
+
output_components = [
|
| 465 |
+
state,
|
| 466 |
+
answer_markdown,
|
| 467 |
+
chain_markdown,
|
| 468 |
+
chain_prompt,
|
| 469 |
+
roi_overview_image,
|
| 470 |
+
roi_gallery,
|
| 471 |
+
roi_prompt_markdown,
|
| 472 |
+
evidence_markdown,
|
| 473 |
+
evidence_prompt_markdown,
|
| 474 |
+
answer_process_markdown,
|
| 475 |
+
answer_prompt_markdown,
|
| 476 |
+
]
|
| 477 |
|
| 478 |
run_button.click(
|
| 479 |
fn=_on_submit,
|
corgi/pipeline.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
-
from dataclasses import dataclass
|
| 4 |
-
from typing import List, Protocol
|
| 5 |
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
from .types import (
|
| 9 |
GroundedEvidence,
|
|
|
|
| 10 |
ReasoningStep,
|
| 11 |
evidences_to_serializable,
|
|
|
|
| 12 |
steps_to_serializable,
|
| 13 |
)
|
| 14 |
|
|
@@ -37,6 +39,13 @@ class SupportsQwenClient(Protocol):
|
|
| 37 |
) -> str:
|
| 38 |
...
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
@dataclass(frozen=True)
|
| 42 |
class PipelineResult:
|
|
@@ -46,14 +55,30 @@ class PipelineResult:
|
|
| 46 |
steps: List[ReasoningStep]
|
| 47 |
evidence: List[GroundedEvidence]
|
| 48 |
answer: str
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def to_json(self) -> dict:
|
| 51 |
-
|
| 52 |
"question": self.question,
|
| 53 |
"steps": steps_to_serializable(self.steps),
|
| 54 |
"evidence": evidences_to_serializable(self.evidence),
|
| 55 |
"answer": self.answer,
|
| 56 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
class CoRGIPipeline:
|
|
@@ -71,6 +96,7 @@ class CoRGIPipeline:
|
|
| 71 |
max_steps: int = 4,
|
| 72 |
max_regions: int = 4,
|
| 73 |
) -> PipelineResult:
|
|
|
|
| 74 |
steps = self._vlm.structured_reasoning(image=image, question=question, max_steps=max_steps)
|
| 75 |
evidences: List[GroundedEvidence] = []
|
| 76 |
for step in steps:
|
|
@@ -86,7 +112,15 @@ class CoRGIPipeline:
|
|
| 86 |
continue
|
| 87 |
evidences.extend(step_evs[:max_regions])
|
| 88 |
answer = self._vlm.synthesize_answer(image=image, question=question, steps=steps, evidences=evidences)
|
| 89 |
-
return PipelineResult(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
__all__ = ["CoRGIPipeline", "PipelineResult"]
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from typing import List, Optional, Protocol
|
| 5 |
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
from .types import (
|
| 9 |
GroundedEvidence,
|
| 10 |
+
PromptLog,
|
| 11 |
ReasoningStep,
|
| 12 |
evidences_to_serializable,
|
| 13 |
+
prompt_logs_to_serializable,
|
| 14 |
steps_to_serializable,
|
| 15 |
)
|
| 16 |
|
|
|
|
| 39 |
) -> str:
|
| 40 |
...
|
| 41 |
|
| 42 |
+
def reset_logs(self) -> None:
|
| 43 |
+
...
|
| 44 |
+
|
| 45 |
+
reasoning_log: Optional[PromptLog]
|
| 46 |
+
grounding_logs: List[PromptLog]
|
| 47 |
+
answer_log: Optional[PromptLog]
|
| 48 |
+
|
| 49 |
|
| 50 |
@dataclass(frozen=True)
|
| 51 |
class PipelineResult:
|
|
|
|
| 55 |
steps: List[ReasoningStep]
|
| 56 |
evidence: List[GroundedEvidence]
|
| 57 |
answer: str
|
| 58 |
+
reasoning_log: Optional[PromptLog] = None
|
| 59 |
+
grounding_logs: List[PromptLog] = field(default_factory=list)
|
| 60 |
+
answer_log: Optional[PromptLog] = None
|
| 61 |
|
| 62 |
def to_json(self) -> dict:
|
| 63 |
+
payload = {
|
| 64 |
"question": self.question,
|
| 65 |
"steps": steps_to_serializable(self.steps),
|
| 66 |
"evidence": evidences_to_serializable(self.evidence),
|
| 67 |
"answer": self.answer,
|
| 68 |
}
|
| 69 |
+
reasoning_entries = (
|
| 70 |
+
prompt_logs_to_serializable([self.reasoning_log]) if self.reasoning_log else []
|
| 71 |
+
)
|
| 72 |
+
if reasoning_entries:
|
| 73 |
+
payload["reasoning_log"] = reasoning_entries[0]
|
| 74 |
+
|
| 75 |
+
payload["grounding_logs"] = prompt_logs_to_serializable(self.grounding_logs)
|
| 76 |
+
|
| 77 |
+
answer_entries = prompt_logs_to_serializable([self.answer_log]) if self.answer_log else []
|
| 78 |
+
if answer_entries:
|
| 79 |
+
payload["answer_log"] = answer_entries[0]
|
| 80 |
+
|
| 81 |
+
return payload
|
| 82 |
|
| 83 |
|
| 84 |
class CoRGIPipeline:
|
|
|
|
| 96 |
max_steps: int = 4,
|
| 97 |
max_regions: int = 4,
|
| 98 |
) -> PipelineResult:
|
| 99 |
+
self._vlm.reset_logs()
|
| 100 |
steps = self._vlm.structured_reasoning(image=image, question=question, max_steps=max_steps)
|
| 101 |
evidences: List[GroundedEvidence] = []
|
| 102 |
for step in steps:
|
|
|
|
| 112 |
continue
|
| 113 |
evidences.extend(step_evs[:max_regions])
|
| 114 |
answer = self._vlm.synthesize_answer(image=image, question=question, steps=steps, evidences=evidences)
|
| 115 |
+
return PipelineResult(
|
| 116 |
+
question=question,
|
| 117 |
+
steps=steps,
|
| 118 |
+
evidence=evidences,
|
| 119 |
+
answer=answer,
|
| 120 |
+
reasoning_log=self._vlm.reasoning_log,
|
| 121 |
+
grounding_logs=list(self._vlm.grounding_logs),
|
| 122 |
+
answer_log=self._vlm.answer_log,
|
| 123 |
+
)
|
| 124 |
|
| 125 |
|
| 126 |
__all__ = ["CoRGIPipeline", "PipelineResult"]
|
corgi/qwen_client.py
CHANGED
|
@@ -8,7 +8,7 @@ from PIL import Image
|
|
| 8 |
from transformers import AutoModelForImageTextToText, AutoProcessor
|
| 9 |
|
| 10 |
from .parsers import parse_roi_evidence, parse_structured_reasoning
|
| 11 |
-
from .types import GroundedEvidence, ReasoningStep
|
| 12 |
|
| 13 |
|
| 14 |
DEFAULT_REASONING_PROMPT = (
|
|
@@ -117,6 +117,24 @@ class Qwen3VLClient:
|
|
| 117 |
) -> None:
|
| 118 |
self.config = config or QwenGenerationConfig()
|
| 119 |
self._model, self._processor = _load_backend(self.config.model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
def _chat(
|
| 122 |
self,
|
|
@@ -162,6 +180,7 @@ class Qwen3VLClient:
|
|
| 162 |
def structured_reasoning(self, image: Image.Image, question: str, max_steps: int) -> List[ReasoningStep]:
|
| 163 |
prompt = DEFAULT_REASONING_PROMPT.format(max_steps=max_steps) + f"\nQuestion: {question}"
|
| 164 |
response = self._chat(image=image, prompt=prompt)
|
|
|
|
| 165 |
return parse_structured_reasoning(response, max_steps=max_steps)
|
| 166 |
|
| 167 |
def extract_step_evidence(
|
|
@@ -177,6 +196,9 @@ class Qwen3VLClient:
|
|
| 177 |
)
|
| 178 |
response = self._chat(image=image, prompt=prompt, max_new_tokens=256)
|
| 179 |
evidences = parse_roi_evidence(response, default_step_index=step.index)
|
|
|
|
|
|
|
|
|
|
| 180 |
return evidences[:max_regions]
|
| 181 |
|
| 182 |
def synthesize_answer(
|
|
@@ -192,6 +214,7 @@ class Qwen3VLClient:
|
|
| 192 |
evidence=_format_evidence_for_prompt(evidences),
|
| 193 |
)
|
| 194 |
response = self._chat(image=image, prompt=prompt, max_new_tokens=256)
|
|
|
|
| 195 |
return _strip_think_content(response)
|
| 196 |
|
| 197 |
|
|
|
|
| 8 |
from transformers import AutoModelForImageTextToText, AutoProcessor
|
| 9 |
|
| 10 |
from .parsers import parse_roi_evidence, parse_structured_reasoning
|
| 11 |
+
from .types import GroundedEvidence, PromptLog, ReasoningStep
|
| 12 |
|
| 13 |
|
| 14 |
DEFAULT_REASONING_PROMPT = (
|
|
|
|
| 117 |
) -> None:
|
| 118 |
self.config = config or QwenGenerationConfig()
|
| 119 |
self._model, self._processor = _load_backend(self.config.model_id)
|
| 120 |
+
self.reset_logs()
|
| 121 |
+
|
| 122 |
+
def reset_logs(self) -> None:
|
| 123 |
+
self._reasoning_log: Optional[PromptLog] = None
|
| 124 |
+
self._grounding_logs: List[PromptLog] = []
|
| 125 |
+
self._answer_log: Optional[PromptLog] = None
|
| 126 |
+
|
| 127 |
+
@property
|
| 128 |
+
def reasoning_log(self) -> Optional[PromptLog]:
|
| 129 |
+
return self._reasoning_log
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def grounding_logs(self) -> List[PromptLog]:
|
| 133 |
+
return list(self._grounding_logs)
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def answer_log(self) -> Optional[PromptLog]:
|
| 137 |
+
return self._answer_log
|
| 138 |
|
| 139 |
def _chat(
|
| 140 |
self,
|
|
|
|
| 180 |
def structured_reasoning(self, image: Image.Image, question: str, max_steps: int) -> List[ReasoningStep]:
|
| 181 |
prompt = DEFAULT_REASONING_PROMPT.format(max_steps=max_steps) + f"\nQuestion: {question}"
|
| 182 |
response = self._chat(image=image, prompt=prompt)
|
| 183 |
+
self._reasoning_log = PromptLog(prompt=prompt, response=response, stage="reasoning")
|
| 184 |
return parse_structured_reasoning(response, max_steps=max_steps)
|
| 185 |
|
| 186 |
def extract_step_evidence(
|
|
|
|
| 196 |
)
|
| 197 |
response = self._chat(image=image, prompt=prompt, max_new_tokens=256)
|
| 198 |
evidences = parse_roi_evidence(response, default_step_index=step.index)
|
| 199 |
+
self._grounding_logs.append(
|
| 200 |
+
PromptLog(prompt=prompt, response=response, step_index=step.index, stage="grounding")
|
| 201 |
+
)
|
| 202 |
return evidences[:max_regions]
|
| 203 |
|
| 204 |
def synthesize_answer(
|
|
|
|
| 214 |
evidence=_format_evidence_for_prompt(evidences),
|
| 215 |
)
|
| 216 |
response = self._chat(image=image, prompt=prompt, max_new_tokens=256)
|
| 217 |
+
self._answer_log = PromptLog(prompt=prompt, response=response, stage="synthesis")
|
| 218 |
return _strip_think_content(response)
|
| 219 |
|
| 220 |
|
corgi/types.py
CHANGED
|
@@ -28,6 +28,16 @@ class GroundedEvidence:
|
|
| 28 |
raw_source: Optional[Dict[str, object]] = None
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def steps_to_serializable(steps: List[ReasoningStep]) -> List[Dict[str, object]]:
|
| 32 |
"""Helper to convert steps into JSON-friendly dictionaries."""
|
| 33 |
|
|
@@ -59,3 +69,19 @@ def evidences_to_serializable(evidences: List[GroundedEvidence]) -> List[Dict[st
|
|
| 59 |
item["raw_source"] = ev.raw_source
|
| 60 |
serializable.append(item)
|
| 61 |
return serializable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
raw_source: Optional[Dict[str, object]] = None
|
| 29 |
|
| 30 |
|
| 31 |
+
@dataclass(frozen=True)
|
| 32 |
+
class PromptLog:
|
| 33 |
+
"""Capture the prompt/response pair used at a given pipeline stage."""
|
| 34 |
+
|
| 35 |
+
prompt: str
|
| 36 |
+
response: Optional[str] = None
|
| 37 |
+
step_index: Optional[int] = None
|
| 38 |
+
stage: Optional[str] = None
|
| 39 |
+
|
| 40 |
+
|
| 41 |
def steps_to_serializable(steps: List[ReasoningStep]) -> List[Dict[str, object]]:
|
| 42 |
"""Helper to convert steps into JSON-friendly dictionaries."""
|
| 43 |
|
|
|
|
| 69 |
item["raw_source"] = ev.raw_source
|
| 70 |
serializable.append(item)
|
| 71 |
return serializable
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def prompt_logs_to_serializable(logs: List[PromptLog]) -> List[Dict[str, object]]:
|
| 75 |
+
"""Convert prompt logs into JSON-friendly structures."""
|
| 76 |
+
|
| 77 |
+
serializable: List[Dict[str, object]] = []
|
| 78 |
+
for log in logs:
|
| 79 |
+
item: Dict[str, object] = {"prompt": log.prompt}
|
| 80 |
+
if log.response is not None:
|
| 81 |
+
item["response"] = log.response
|
| 82 |
+
if log.step_index is not None:
|
| 83 |
+
item["step_index"] = log.step_index
|
| 84 |
+
if log.stage is not None:
|
| 85 |
+
item["stage"] = log.stage
|
| 86 |
+
serializable.append(item)
|
| 87 |
+
return serializable
|