Spaces:
Running
Running
File size: 6,828 Bytes
f8731a3 3318d20 f8731a3 3318d20 f8731a3 3318d20 f8731a3 3318d20 f8731a3 3318d20 f8731a3 3318d20 f8731a3 3318d20 f8731a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import numpy as np
import cv2
import random
from sklearn.decomposition import PCA
from sklearn.metrics import classification_report, roc_auc_score
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input # Add this import
from tensorflow.keras.models import Model
from pyod.models.iforest import IForest
from pyod.models.lof import LOF
from pyod.models.ocsvm import OCSVM
import matplotlib.pyplot as plt
# Paths (adjust as needed)
dataset_path = "data"
basmati_path = os.path.join(dataset_path, "basmati")
jasmine_path = os.path.join(dataset_path, "jasmine")
# Load and preprocess images
def load_images_from_folder(folder, label, limit=None):
images = []
filenames = os.listdir(folder)
if limit:
filenames = random.sample(filenames, limit)
img_data = []
for filename in filenames:
img_path = os.path.join(folder, filename)
img = cv2.imread(img_path)
if img is not None:
img = cv2.resize(img, (128, 128))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = preprocess_input(img.astype(np.float32)) # Now this will work
images.append(img)
img_data.append((img, filename, label))
return np.array(images), img_data
# Load data
all_basmati_images, all_basmati_data = load_images_from_folder(basmati_path, label=0)
jasmine_images, jasmine_data = load_images_from_folder(jasmine_path, label=1, limit=None)
# Training and test sets
basmati_train_count = int(0.2 * len(all_basmati_images))
basmati_train_indices = random.sample(range(len(all_basmati_images)), basmati_train_count)
X_train = np.array([all_basmati_images[i] for i in basmati_train_indices])
train_data = [all_basmati_data[i] for i in basmati_train_indices]
basmati_test_count = 200
basmati_test_indices = random.sample(range(len(all_basmati_images)), basmati_test_count)
X_test_basmati = np.array([all_basmati_images[i] for i in basmati_test_indices])
test_data_basmati = [all_basmati_data[i] for i in basmati_test_indices]
jasmine_test_count = 10
jasmine_test_images, jasmine_test_data = load_images_from_folder(jasmine_path, label=1, limit=jasmine_test_count)
X_test = np.concatenate([X_test_basmati, jasmine_test_images], axis=0)
test_data = test_data_basmati + jasmine_test_data
y_test = np.array([0] * len(X_test_basmati) + [1] * len(jasmine_test_images))
# Feature extraction
base_model = EfficientNetB0(weights='imagenet', include_top=False, pooling='avg', input_shape=(128, 128, 3))
feature_extractor = Model(inputs=base_model.input, outputs=base_model.output)
def extract_features(images, batch_size=16):
return feature_extractor.predict(images, batch_size=batch_size, verbose=1)
X_train_features = extract_features(X_train)
X_test_features = extract_features(X_test)
# PCA
pca = PCA(n_components=50)
X_train_reduced = pca.fit_transform(X_train_features)
X_test_reduced = pca.transform(X_test_features)
# Main anomaly detection function
def run_anomaly_detection(mode, model_name, contamination, n_estimators, n_neighbors, nu):
# Adjust training data for semi-supervised mode
if mode == "Semi-supervised":
# Add a small portion of Jasmine to training (e.g., 5 images)
jasmine_train_count = 5
jasmine_train_images, jasmine_train_data = load_images_from_folder(jasmine_path, label=1, limit=jasmine_train_count)
X_train_semi = np.concatenate([X_train, jasmine_train_images], axis=0)
X_train_semi_features = extract_features(X_train_semi)
X_train_semi_reduced = pca.transform(X_train_semi_features)
else:
X_train_semi_reduced = X_train_reduced
# Initialize model based on selection
if model_name == "IForest":
outlier_detector = IForest(contamination=contamination, n_estimators=int(n_estimators))
elif model_name == "LOF":
outlier_detector = LOF(contamination=contamination, n_neighbors=int(n_neighbors))
else: # OCSVM
outlier_detector = OCSVM(contamination=contamination, nu=nu)
# Fit and predict
outlier_detector.fit(X_train_semi_reduced)
predictions = outlier_detector.predict(X_test_reduced)
# Evaluation
report = classification_report(y_test, predictions)
try:
auc_score = roc_auc_score(y_test, predictions)
auc_text = f"AUC Score: {auc_score:.4f}"
except:
auc_text = "AUC Score could not be calculated."
# Outlier filenames
outlier_indices = np.where(predictions == 1)[0]
outlier_list = []
for idx in outlier_indices:
img, filename, label = test_data[idx]
rice_type = "Jasmine" if label == 1 else "Basmati"
outlier_list.append(f"Filename: {filename}, Actual Label: {rice_type}")
outlier_text = "\n".join(outlier_list) if outlier_list else "No outliers detected."
# PCA Visualization (2D)
pca_vis = PCA(n_components=2)
X_test_2d = pca_vis.fit_transform(X_test_features)
plt.figure(figsize=(10, 7))
plt.scatter(X_test_2d[y_test == 0, 0], X_test_2d[y_test == 0, 1], c='blue', label='Basmati', alpha=0.6, s=40)
plt.scatter(X_test_2d[y_test == 1, 0], X_test_2d[y_test == 1, 1], c='red', label='Jasmine', alpha=0.6, s=40)
plt.scatter(X_test_2d[outlier_indices, 0], X_test_2d[outlier_indices, 1],
facecolors='none', edgecolors='black', linewidths=1.5, label='Outliers', s=80)
plt.title("PCA Projection with Outliers")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.legend()
plt.grid(True)
plt.tight_layout()
return report, auc_text, outlier_text, plt
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("## Anomaly Detection Playground")
with gr.Row():
mode = gr.Dropdown(["Unsupervised", "Semi-supervised"], label="Mode")
model_name = gr.Dropdown(["IForest", "LOF", "OCSVM"], label="Model")
with gr.Row():
contamination = gr.Slider(0, 0.25, value=0.05, step=0.01, label="Contamination")
n_estimators = gr.Slider(100, 299, value=100, step=10, label="N Estimators (IForest)")
n_neighbors = gr.Slider(5, 50, value=20, step=1, label="N Neighbors (LOF)")
nu = gr.Slider(0, 1, value=0.1, step=0.01, label="Nu (OCSVM)")
submit_btn = gr.Button("Run Detection")
with gr.Row():
report_output = gr.Textbox(label="Classification Report")
auc_output = gr.Textbox(label="AUC Score")
outlier_output = gr.Textbox(label="Detected Outliers")
plot_output = gr.Plot(label="PCA Projection")
submit_btn.click(
fn=run_anomaly_detection,
inputs=[mode, model_name, contamination, n_estimators, n_neighbors, nu],
outputs=[report_output, auc_output, outlier_output, plot_output]
)
interface.launch() |