File size: 6,828 Bytes
f8731a3
 
 
 
 
 
 
 
3318d20
f8731a3
 
 
 
 
 
 
3318d20
 
 
f8731a3
3318d20
f8731a3
 
 
 
 
 
 
 
 
 
 
 
3318d20
f8731a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318d20
f8731a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318d20
f8731a3
 
 
 
 
 
3318d20
 
f8731a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import os
import numpy as np
import cv2
import random
from sklearn.decomposition import PCA
from sklearn.metrics import classification_report, roc_auc_score
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input  # Add this import
from tensorflow.keras.models import Model
from pyod.models.iforest import IForest
from pyod.models.lof import LOF
from pyod.models.ocsvm import OCSVM
import matplotlib.pyplot as plt

# Paths (adjust as needed)
dataset_path = "data"
basmati_path = os.path.join(dataset_path, "basmati")
jasmine_path = os.path.join(dataset_path, "jasmine")

# Load and preprocess images
def load_images_from_folder(folder, label, limit=None):
    images = []
    filenames = os.listdir(folder)
    if limit:
        filenames = random.sample(filenames, limit)
    img_data = []
    for filename in filenames:
        img_path = os.path.join(folder, filename)
        img = cv2.imread(img_path)
        if img is not None:
            img = cv2.resize(img, (128, 128))
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img = preprocess_input(img.astype(np.float32))  # Now this will work
            images.append(img)
            img_data.append((img, filename, label))
    return np.array(images), img_data

# Load data
all_basmati_images, all_basmati_data = load_images_from_folder(basmati_path, label=0)
jasmine_images, jasmine_data = load_images_from_folder(jasmine_path, label=1, limit=None)

# Training and test sets
basmati_train_count = int(0.2 * len(all_basmati_images))
basmati_train_indices = random.sample(range(len(all_basmati_images)), basmati_train_count)
X_train = np.array([all_basmati_images[i] for i in basmati_train_indices])
train_data = [all_basmati_data[i] for i in basmati_train_indices]

basmati_test_count = 200
basmati_test_indices = random.sample(range(len(all_basmati_images)), basmati_test_count)
X_test_basmati = np.array([all_basmati_images[i] for i in basmati_test_indices])
test_data_basmati = [all_basmati_data[i] for i in basmati_test_indices]

jasmine_test_count = 10
jasmine_test_images, jasmine_test_data = load_images_from_folder(jasmine_path, label=1, limit=jasmine_test_count)

X_test = np.concatenate([X_test_basmati, jasmine_test_images], axis=0)
test_data = test_data_basmati + jasmine_test_data
y_test = np.array([0] * len(X_test_basmati) + [1] * len(jasmine_test_images))

# Feature extraction
base_model = EfficientNetB0(weights='imagenet', include_top=False, pooling='avg', input_shape=(128, 128, 3))
feature_extractor = Model(inputs=base_model.input, outputs=base_model.output)

def extract_features(images, batch_size=16):
    return feature_extractor.predict(images, batch_size=batch_size, verbose=1)

X_train_features = extract_features(X_train)
X_test_features = extract_features(X_test)

# PCA
pca = PCA(n_components=50)
X_train_reduced = pca.fit_transform(X_train_features)
X_test_reduced = pca.transform(X_test_features)

# Main anomaly detection function
def run_anomaly_detection(mode, model_name, contamination, n_estimators, n_neighbors, nu):
    # Adjust training data for semi-supervised mode
    if mode == "Semi-supervised":
        # Add a small portion of Jasmine to training (e.g., 5 images)
        jasmine_train_count = 5
        jasmine_train_images, jasmine_train_data = load_images_from_folder(jasmine_path, label=1, limit=jasmine_train_count)
        X_train_semi = np.concatenate([X_train, jasmine_train_images], axis=0)
        X_train_semi_features = extract_features(X_train_semi)
        X_train_semi_reduced = pca.transform(X_train_semi_features)
    else:
        X_train_semi_reduced = X_train_reduced

    # Initialize model based on selection
    if model_name == "IForest":
        outlier_detector = IForest(contamination=contamination, n_estimators=int(n_estimators))
    elif model_name == "LOF":
        outlier_detector = LOF(contamination=contamination, n_neighbors=int(n_neighbors))
    else:  # OCSVM
        outlier_detector = OCSVM(contamination=contamination, nu=nu)

    # Fit and predict
    outlier_detector.fit(X_train_semi_reduced)
    predictions = outlier_detector.predict(X_test_reduced)

    # Evaluation
    report = classification_report(y_test, predictions)
    try:
        auc_score = roc_auc_score(y_test, predictions)
        auc_text = f"AUC Score: {auc_score:.4f}"
    except:
        auc_text = "AUC Score could not be calculated."

    # Outlier filenames
    outlier_indices = np.where(predictions == 1)[0]
    outlier_list = []
    for idx in outlier_indices:
        img, filename, label = test_data[idx]
        rice_type = "Jasmine" if label == 1 else "Basmati"
        outlier_list.append(f"Filename: {filename}, Actual Label: {rice_type}")
    outlier_text = "\n".join(outlier_list) if outlier_list else "No outliers detected."

    # PCA Visualization (2D)
    pca_vis = PCA(n_components=2)
    X_test_2d = pca_vis.fit_transform(X_test_features)

    plt.figure(figsize=(10, 7))
    plt.scatter(X_test_2d[y_test == 0, 0], X_test_2d[y_test == 0, 1], c='blue', label='Basmati', alpha=0.6, s=40)
    plt.scatter(X_test_2d[y_test == 1, 0], X_test_2d[y_test == 1, 1], c='red', label='Jasmine', alpha=0.6, s=40)
    plt.scatter(X_test_2d[outlier_indices, 0], X_test_2d[outlier_indices, 1], 
                facecolors='none', edgecolors='black', linewidths=1.5, label='Outliers', s=80)
    plt.title("PCA Projection with Outliers")
    plt.xlabel("PCA Component 1")
    plt.ylabel("PCA Component 2")
    plt.legend()
    plt.grid(True)
    plt.tight_layout()

    return report, auc_text, outlier_text, plt

# Gradio Interface
with gr.Blocks() as interface:
    gr.Markdown("## Anomaly Detection Playground")
    
    with gr.Row():
        mode = gr.Dropdown(["Unsupervised", "Semi-supervised"], label="Mode")
        model_name = gr.Dropdown(["IForest", "LOF", "OCSVM"], label="Model")
    
    with gr.Row():
        contamination = gr.Slider(0, 0.25, value=0.05, step=0.01, label="Contamination")
        n_estimators = gr.Slider(100, 299, value=100, step=10, label="N Estimators (IForest)")
        n_neighbors = gr.Slider(5, 50, value=20, step=1, label="N Neighbors (LOF)")
        nu = gr.Slider(0, 1, value=0.1, step=0.01, label="Nu (OCSVM)")

    submit_btn = gr.Button("Run Detection")
    
    with gr.Row():
        report_output = gr.Textbox(label="Classification Report")
        auc_output = gr.Textbox(label="AUC Score")
    
    outlier_output = gr.Textbox(label="Detected Outliers")
    plot_output = gr.Plot(label="PCA Projection")

    submit_btn.click(
        fn=run_anomaly_detection,
        inputs=[mode, model_name, contamination, n_estimators, n_neighbors, nu],
        outputs=[report_output, auc_output, outlier_output, plot_output]
    )

interface.launch()