Add 3 files
Browse files- README.md +7 -5
- index.html +312 -18
- prompts.txt +0 -0
README.md
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: static
|
7 |
pinned: false
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: sglang-prefill-decoded-aggregation
|
3 |
+
emoji: π³
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
sdk: static
|
7 |
pinned: false
|
8 |
+
tags:
|
9 |
+
- deepsite
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
index.html
CHANGED
@@ -1,19 +1,313 @@
|
|
1 |
-
<!
|
2 |
-
<html>
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
</html>
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>DeepSeek Deployment with SGLang: Visual Explanation</title>
|
7 |
+
<script src="https://cdn.tailwindcss.com"></script>
|
8 |
+
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap" rel="stylesheet">
|
9 |
+
<style>
|
10 |
+
body {
|
11 |
+
font-family: 'Inter', sans-serif;
|
12 |
+
background-color: #f3f4f6; /* Light gray background */
|
13 |
+
}
|
14 |
+
.section-title {
|
15 |
+
font-size: 1.75rem; /* Larger section titles */
|
16 |
+
font-weight: 700;
|
17 |
+
color: #1e3a8a; /* Dark blue */
|
18 |
+
border-bottom: 2px solid #3b82f6; /* Medium blue border */
|
19 |
+
padding-bottom: 0.5rem;
|
20 |
+
margin-bottom: 1.5rem;
|
21 |
+
}
|
22 |
+
.subsection-title {
|
23 |
+
font-size: 1.25rem;
|
24 |
+
font-weight: 600;
|
25 |
+
color: #1d4ed8; /* Slightly lighter blue */
|
26 |
+
margin-top: 1rem;
|
27 |
+
margin-bottom: 0.75rem;
|
28 |
+
}
|
29 |
+
.card {
|
30 |
+
background-color: #ffffff;
|
31 |
+
border-radius: 0.75rem; /* More rounded corners */
|
32 |
+
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
33 |
+
padding: 1.5rem;
|
34 |
+
margin-bottom: 1.5rem;
|
35 |
+
transition: transform 0.2s ease-in-out;
|
36 |
+
}
|
37 |
+
.card:hover {
|
38 |
+
transform: translateY(-5px);
|
39 |
+
}
|
40 |
+
.highlight {
|
41 |
+
background-color: #eff6ff; /* Light blue background for highlights */
|
42 |
+
color: #1e40af; /* Darker blue text for highlights */
|
43 |
+
padding: 0.25rem 0.75rem;
|
44 |
+
border-radius: 0.375rem;
|
45 |
+
font-weight: 600;
|
46 |
+
}
|
47 |
+
.metric {
|
48 |
+
font-size: 1.1rem;
|
49 |
+
font-weight: 700;
|
50 |
+
color: #16a34a; /* Green for positive metrics */
|
51 |
+
}
|
52 |
+
.comparison-metric {
|
53 |
+
font-size: 1rem;
|
54 |
+
font-weight: 600;
|
55 |
+
color: #52525b; /* Neutral gray for comparison details */
|
56 |
+
}
|
57 |
+
ul {
|
58 |
+
list-style-type: none; /* Remove default bullets */
|
59 |
+
padding-left: 0;
|
60 |
+
}
|
61 |
+
li {
|
62 |
+
position: relative;
|
63 |
+
padding-left: 1.75rem; /* Space for custom bullet */
|
64 |
+
margin-bottom: 0.75rem;
|
65 |
+
line-height: 1.6;
|
66 |
+
}
|
67 |
+
li::before {
|
68 |
+
content: 'β'; /* Custom checkmark bullet */
|
69 |
+
position: absolute;
|
70 |
+
left: 0;
|
71 |
+
color: #2563eb; /* Blue checkmark */
|
72 |
+
font-weight: bold;
|
73 |
+
font-size: 1.25rem;
|
74 |
+
}
|
75 |
+
.arrow {
|
76 |
+
font-size: 1.5rem;
|
77 |
+
color: #3b82f6;
|
78 |
+
margin: 0 0.5rem;
|
79 |
+
}
|
80 |
+
.gpu-icon svg {
|
81 |
+
width: 24px;
|
82 |
+
height: 24px;
|
83 |
+
fill: currentColor;
|
84 |
+
margin-right: 8px;
|
85 |
+
}
|
86 |
+
.flex-container {
|
87 |
+
display: flex;
|
88 |
+
align-items: center;
|
89 |
+
justify-content: space-around;
|
90 |
+
flex-wrap: wrap;
|
91 |
+
}
|
92 |
+
.flow-item {
|
93 |
+
text-align: center;
|
94 |
+
margin: 1rem;
|
95 |
+
padding: 1rem;
|
96 |
+
background-color: #e0e7ff;
|
97 |
+
border-radius: 0.5rem;
|
98 |
+
min-width: 150px;
|
99 |
+
}
|
100 |
+
</style>
|
101 |
+
</head>
|
102 |
+
<body class="p-4 md:p-8">
|
103 |
+
<div class="max-w-5xl mx-auto">
|
104 |
+
<header class="mb-12 text-center">
|
105 |
+
<h1 class="text-4xl font-bold text-gray-800 mb-2">Deploying DeepSeek with SGLang</h1>
|
106 |
+
<p class="text-xl text-gray-600">Achieving High Performance with PD Disaggregation & Large-scale Expert Parallelism</p>
|
107 |
+
<p class="text-sm text-gray-500 mt-1">Based on SGLang Team, May 05, 2025</p>
|
108 |
+
</header>
|
109 |
+
|
110 |
+
<section class="mb-10">
|
111 |
+
<h2 class="section-title">Key Achievements with SGLang</h2>
|
112 |
+
<div class="grid md:grid-cols-2 gap-6">
|
113 |
+
<div class="card">
|
114 |
+
<h3 class="subsection-title">π Near Official Performance</h3>
|
115 |
+
<p class="text-gray-700">SGLang's implementation on 12 nodes (96 H100 GPUs) nearly matches DeepSeek's official inference throughput.</p>
|
116 |
+
<p class="mt-2">Input: <span class="metric">52.3k tokens/s per node</span></p>
|
117 |
+
<p>Output: <span class="metric">22.3k tokens/s per node</span> (for 2k token inputs)</p>
|
118 |
+
</div>
|
119 |
+
<div class="card">
|
120 |
+
<h3 class="subsection-title">π° Cost Efficiency</h3>
|
121 |
+
<p class="text-gray-700">Translates to <span class="metric">$0.20 / 1M output tokens</span>, approximately <span class="highlight">1/5th the cost</span> of the official DeepSeek Chat API.</p>
|
122 |
+
</div>
|
123 |
+
<div class="card md:col-span-2">
|
124 |
+
<h3 class="subsection-title">β‘ Throughput Boost</h3>
|
125 |
+
<p class="text-gray-700">Optimized strategy improves output throughput by up to <span class="metric">5x</span> compared to vanilla tensor parallelism on the same resources.</p>
|
126 |
+
</div>
|
127 |
+
</div>
|
128 |
+
<div class="card mt-6">
|
129 |
+
<h3 class="subsection-title">Core SGLang Enhancements</h3>
|
130 |
+
<ul>
|
131 |
+
<li>Support for Prefill-Decode (PD) Disaggregation.</li>
|
132 |
+
<li>Large-scale Expert Parallelism (EP), including DeepEP, DeepGEMM, and EPLB.</li>
|
133 |
+
<li>Open-source implementation for community access and development.</li>
|
134 |
+
</ul>
|
135 |
+
</div>
|
136 |
+
</section>
|
137 |
+
|
138 |
+
<section class="mb-10">
|
139 |
+
<h2 class="section-title">Parallelism Design Strategies</h2>
|
140 |
+
<div class="grid md:grid-cols-2 gap-6">
|
141 |
+
<div class="card">
|
142 |
+
<h3 class="subsection-title">Attention Layers (MLA)</h3>
|
143 |
+
<p class="text-gray-700">Utilizes <span class="highlight">DP Attention</span> (Data Parallelism):</p>
|
144 |
+
<ul>
|
145 |
+
<li>Eliminates KV cache duplication across devices.</li>
|
146 |
+
<li>Significantly reduces memory overhead.</li>
|
147 |
+
<li>Supports hybrid data and tensor parallelism for flexibility.</li>
|
148 |
+
</ul>
|
149 |
+
</div>
|
150 |
+
<div class="card">
|
151 |
+
<h3 class="subsection-title">Dense FFNs</h3>
|
152 |
+
<p class="text-gray-700">Adopts <span class="highlight">Data Parallelism (DP)</span> over Tensor Parallelism (TP):</p>
|
153 |
+
<ul>
|
154 |
+
<li><span class="font-semibold">Enhanced Scalability:</span> Avoids fragmentation and ensures balanced workloads.</li>
|
155 |
+
<li><span class="font-semibold">Optimized Memory Efficiency:</span> Lower TP degree often minimizes memory, making DP favorable.</li>
|
156 |
+
<li><span class="font-semibold">Minimized Communication:</span> Reduces all-reduce operations by 50% compared to pure TP.</li>
|
157 |
+
</ul>
|
158 |
+
</div>
|
159 |
+
<div class="card">
|
160 |
+
<h3 class="subsection-title">Sparse FFNs (Mixture of Experts)</h3>
|
161 |
+
<p class="text-gray-700">Implements <span class="highlight">Expert Parallelism (EP)</span>:</p>
|
162 |
+
<ul>
|
163 |
+
<li>Distributes expert weights across multiple devices.</li>
|
164 |
+
<li>Scales memory capacity effectively.</li>
|
165 |
+
<li>Addresses challenges like irregular communication and workload imbalance using DeepEP.</li>
|
166 |
+
</ul>
|
167 |
+
</div>
|
168 |
+
<div class="card">
|
169 |
+
<h3 class="subsection-title">LM Head</h3>
|
170 |
+
<p class="text-gray-700">Employs <span class="highlight">Data Parallelism (DP)</span>:</p>
|
171 |
+
<ul>
|
172 |
+
<li>Mirrors the strategy for dense FFNs.</li>
|
173 |
+
<li>Reduces memory overhead for large vocabulary computations.</li>
|
174 |
+
<li>Simplifies communication across devices.</li>
|
175 |
+
</ul>
|
176 |
+
</div>
|
177 |
+
</div>
|
178 |
+
</section>
|
179 |
+
|
180 |
+
<section class="mb-10">
|
181 |
+
<h2 class="section-title">Prefill & Decode (PD) Disaggregation</h2>
|
182 |
+
<div class="card">
|
183 |
+
<p class="text-gray-700 mb-4">LLM inference has two phases: computation-intensive <span class="font-semibold">Prefill</span> and memory-intensive <span class="font-semibold">Decode</span>. Unified scheduling is inefficient.</p>
|
184 |
+
<h3 class="subsection-title">Problems with Unified Scheduling:</h3>
|
185 |
+
<ul>
|
186 |
+
<li>Prefill batches interrupt decode batches (delay).</li>
|
187 |
+
<li>DP Attention imbalance (increased decode latency).</li>
|
188 |
+
<li>Incompatible with DeepEP's dual dispatch modes.</li>
|
189 |
+
</ul>
|
190 |
+
<h3 class="subsection-title mt-4">SGLang's PD Disaggregation Solution:</h3>
|
191 |
+
<div class="flex-container my-4 p-4 bg-blue-50 rounded-lg">
|
192 |
+
<div class="flow-item">Input Request</div>
|
193 |
+
<div class="arrow">β</div>
|
194 |
+
<div class="flow-item">Prefill Server<br/>(Computes KV Cache)</div>
|
195 |
+
<div class="arrow">β</div>
|
196 |
+
<div class="flow-item">Data Transfer (RDMA)</div>
|
197 |
+
<div class="arrow">β</div>
|
198 |
+
<div class="flow-item">Decode Server<br/>(Iterative Token Gen)</div>
|
199 |
+
</div>
|
200 |
+
<p class="text-gray-700">This separation allows tailored optimizations for each phase, maximizing GPU utilization.</p>
|
201 |
+
<h4 class="font-semibold text-gray-800 mt-3 mb-1">Key Implementation Details:</h4>
|
202 |
+
<ul>
|
203 |
+
<li><span class="highlight">Non-blocking Transfer:</span> Background data send/receive.</li>
|
204 |
+
<li><span class="highlight">RDMA-Based Transfer:</span> Efficient for non-contiguous memory.</li>
|
205 |
+
<li><span class="highlight">Flexible API Integration:</span> Supports Mooncake, NIXL.</li>
|
206 |
+
</ul>
|
207 |
+
</div>
|
208 |
+
</section>
|
209 |
+
|
210 |
+
<section class="mb-10">
|
211 |
+
<h2 class="section-title">Large-scale Expert Parallelism Optimizations</h2>
|
212 |
+
<div class="space-y-6">
|
213 |
+
<div class="card">
|
214 |
+
<h3 class="subsection-title">Expert Parallelism with DeepEP</h3>
|
215 |
+
<p class="text-gray-700">DeepEP streamlines EP by efficiently routing tokens to experts across GPUs.</p>
|
216 |
+
<p class="text-gray-700 mt-2"><span class="highlight">Normal Dispatch:</span> For prefill (long inputs, max throughput). Incompatible with CUDA Graph.</p>
|
217 |
+
<p class="text-gray-700 mt-1"><span class="highlight">Low-Latency Dispatch:</span> For decode (output tokens, min delay). Supports CUDA Graph.</p>
|
218 |
+
<p class="text-gray-700 mt-2">SGLang's <span class="font-semibold">PD Disaggregation</span> enables using both modes effectively with DP Attention.</p>
|
219 |
+
</div>
|
220 |
+
|
221 |
+
<div class="card">
|
222 |
+
<h3 class="subsection-title">DeepGEMM Integration</h3>
|
223 |
+
<p class="text-gray-700">Optimizes MoE matrix multiplications (Grouped GEMMs).</p>
|
224 |
+
<p class="text-gray-700 mt-2"><span class="highlight">Contiguous Layout Kernel:</span> For prefill (dynamic shapes). Used with DeepEP's Normal Dispatch (requires permutation).</p>
|
225 |
+
<p class="text-gray-700 mt-1"><span class="highlight">Masked Layout Kernel:</span> For decode (fixed shapes, CUDA Graph compatible). Used with DeepEP's Low-Latency Dispatch.</p>
|
226 |
+
</div>
|
227 |
+
|
228 |
+
<div class="card">
|
229 |
+
<h3 class="subsection-title">Two-batch Overlap (TBO)</h3>
|
230 |
+
<p class="text-gray-700">Splits a batch into two micro-batches to <span class="highlight">overlap computation and communication</span>.</p>
|
231 |
+
<ul>
|
232 |
+
<li>Lowers peak memory usage.</li>
|
233 |
+
<li>Addresses limited communication bandwidth in multi-node setups.</li>
|
234 |
+
<li>SGLang uses an abstraction layer (operations & yield points) for clean implementation.</li>
|
235 |
+
<li>Optimized launch order in prefill to avoid CPU-blocking by DeepEP.</li>
|
236 |
+
</ul>
|
237 |
+
</div>
|
238 |
+
|
239 |
+
<div class="card">
|
240 |
+
<h3 class="subsection-title">Expert Parallelism Load Balancer (EPLB)</h3>
|
241 |
+
<p class="text-gray-700">Addresses uneven workload distribution in MoE models.</p>
|
242 |
+
<ul>
|
243 |
+
<li>Computes optimal expert arrangement to minimize imbalance.</li>
|
244 |
+
<li>Uses redundant experts (e.g., 288 instead of 256) for flexible placement.</li>
|
245 |
+
<li>Enables diverse parallelism sizes (e.g., 12 or 72).</li>
|
246 |
+
<li>SGLang implements efficient, non-disruptive rebalancing.</li>
|
247 |
+
</ul>
|
248 |
+
<p class="mt-2 text-gray-600">Effectiveness depends on matching input distribution to serving workload (achieved via larger batches or periodic rebalancing).</p>
|
249 |
+
</div>
|
250 |
+
</div>
|
251 |
+
</section>
|
252 |
+
|
253 |
+
<section class="mb-10">
|
254 |
+
<h2 class="section-title">Evaluation Highlights</h2>
|
255 |
+
<div class="grid md:grid-cols-2 gap-6">
|
256 |
+
<div class="card">
|
257 |
+
<h3 class="subsection-title">Prefill Phase Performance</h3>
|
258 |
+
<p class="text-gray-700">On 4 nodes (32 H100s, EP32):</p>
|
259 |
+
<p>Up to <span class="metric">3.3x improvement</span> over TP16 baseline.</p>
|
260 |
+
<p>Throughput within <span class="comparison-metric">5.6% of DeepSeek's official profile</span> (assuming perfect balance).</p>
|
261 |
+
<p class="mt-1">Example: <span class="highlight">50,302 tokens/s per node</span> for 4K prompts.</p>
|
262 |
+
</div>
|
263 |
+
<div class="card">
|
264 |
+
<h3 class="subsection-title">Decode Phase Performance</h3>
|
265 |
+
<p class="text-gray-700">On 9 nodes (72 H100s, EP72):</p>
|
266 |
+
<p><span class="metric">5.2x speedup</span> over TP16 baseline.</p>
|
267 |
+
<p>With simulated MTP, throughput <span class="comparison-metric">6.6% below DeepSeek's profile</span>.</p>
|
268 |
+
<p class="mt-1">Example: <span class="highlight">22,282 tokens/s per node</span> for 2K inputs.</p>
|
269 |
+
</div>
|
270 |
+
</div>
|
271 |
+
|
272 |
+
<div class="card mt-6">
|
273 |
+
<h3 class="subsection-title">Ablation Study: Two-batch Overlap (TBO)</h3>
|
274 |
+
<p class="text-gray-700"><span class="font-semibold">Prefill:</span></p>
|
275 |
+
<ul>
|
276 |
+
<li>Supports larger batch sizes (e.g., 16k tokens/device vs 8k OOM without TBO).</li>
|
277 |
+
<li><span class="metric">27-35% throughput increase</span> by overlapping computation & communication.</li>
|
278 |
+
</ul>
|
279 |
+
<p class="text-gray-700 mt-3"><span class="font-semibold">Decode:</span></p>
|
280 |
+
<ul>
|
281 |
+
<li>Speedup contingent on batch size (e.g., <span class="metric">25.5% at 256 tokens/device</span>).</li>
|
282 |
+
<li>Most substantial speedup (<span class="metric">35%</span>) in simulated MTP with prolonged attention.</li>
|
283 |
+
</ul>
|
284 |
+
</div>
|
285 |
+
|
286 |
+
<div class="card mt-6">
|
287 |
+
<h3 class="subsection-title">Ablation Study: EPLB</h3>
|
288 |
+
<p class="text-gray-700">Delivers significant speedup by mitigating workload imbalance:</p>
|
289 |
+
<ul>
|
290 |
+
<li>Prefill: <span class="metric">1.49x speedup</span>.</li>
|
291 |
+
<li>Decode: <span class="metric">2.54x speedup</span>.</li>
|
292 |
+
</ul>
|
293 |
+
<p class="text-gray-700 mt-2">Strong correlation between <span class="highlight">workload balancedness and overall throughput</span>.</p>
|
294 |
+
<p class="text-gray-700 mt-2">Different expert distributions for prefill vs. decode support PD disaggregation for phase-specific expert placement.</p>
|
295 |
+
</div>
|
296 |
+
</section>
|
297 |
+
|
298 |
+
<section class="mb-6">
|
299 |
+
<h2 class="section-title">Conclusion</h2>
|
300 |
+
<div class="card">
|
301 |
+
<p class="text-gray-700 leading-relaxed">
|
302 |
+
SGLang, by integrating advanced techniques like Prefill-Decode Disaggregation and sophisticated Expert Parallelism strategies (DeepEP, DeepGEMM, TBO, EPLB), successfully deploys the large DeepSeek model on H100 GPUs with performance nearly matching official reports and significantly reducing costs.
|
303 |
+
The open-source nature of these components empowers the community to build upon these optimizations for efficient large-scale LLM serving.
|
304 |
+
</p>
|
305 |
+
</div>
|
306 |
+
</section>
|
307 |
+
|
308 |
+
<footer class="text-center mt-12 py-6 border-t border-gray-300">
|
309 |
+
<p class="text-gray-600">Visual summary generated based on "Deploying DeepSeek with PD Disaggregation and Large-scale Expert Parallelism on 96 H100 GPUs" by The SGLang Team.</p>
|
310 |
+
</footer>
|
311 |
+
</div>
|
312 |
+
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 𧬠<a href="https://enzostvs-deepsite.hf.space?remix=ucalyptus/sglang-prefill-decoded-aggregation" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
|
313 |
</html>
|
prompts.txt
ADDED
File without changes
|