Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import psutil
|
5 |
+
import shutil
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from llama_cpp import Llama
|
9 |
+
|
10 |
+
def run_test(model_type, repo_id, file_name, test_prompt):
|
11 |
+
result = {}
|
12 |
+
|
13 |
+
# Disk usage before download
|
14 |
+
disk_before = shutil.disk_usage("/")[2]
|
15 |
+
|
16 |
+
start_time = time.time()
|
17 |
+
process = psutil.Process(os.getpid())
|
18 |
+
cpu_start = process.cpu_percent(interval=0.1)
|
19 |
+
mem_start = process.memory_info().rss
|
20 |
+
|
21 |
+
try:
|
22 |
+
if model_type == "transformers":
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id)
|
25 |
+
inputs = tokenizer(test_prompt, return_tensors="pt")
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
28 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
else:
|
30 |
+
gguf_path = f"./{file_name}"
|
31 |
+
if not os.path.exists(gguf_path):
|
32 |
+
# Auto download from Hugging Face model repo if not already
|
33 |
+
from huggingface_hub import hf_hub_download
|
34 |
+
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir="./", local_dir_use_symlinks=False)
|
35 |
+
llm = Llama(model_path=gguf_path, n_ctx=2048)
|
36 |
+
output_text = llm(test_prompt, max_tokens=128)["choices"][0]["text"]
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
return f"❌ Error: {str(e)}", "", "", "", ""
|
40 |
+
|
41 |
+
end_time = time.time()
|
42 |
+
|
43 |
+
# Memory and CPU after
|
44 |
+
mem_end = process.memory_info().rss
|
45 |
+
cpu_end = process.cpu_percent(interval=0.1)
|
46 |
+
|
47 |
+
# Disk usage after
|
48 |
+
disk_after = shutil.disk_usage("/")[2]
|
49 |
+
|
50 |
+
result["output"] = output_text
|
51 |
+
result["inference_time"] = round(end_time - start_time, 2)
|
52 |
+
result["memory_used_MB"] = round((mem_end - mem_start) / (1024 * 1024), 2)
|
53 |
+
result["cpu_percent"] = round(cpu_end - cpu_start, 2)
|
54 |
+
result["disk_used_MB"] = round((disk_before - disk_after) / (1024 * 1024), 2)
|
55 |
+
|
56 |
+
return (
|
57 |
+
result["output"],
|
58 |
+
f"{result['inference_time']} sec",
|
59 |
+
f"{result['cpu_percent']}%",
|
60 |
+
f"{result['memory_used_MB']} MB",
|
61 |
+
f"{result['disk_used_MB']} MB"
|
62 |
+
)
|
63 |
+
|
64 |
+
gr.Interface(
|
65 |
+
fn=run_test,
|
66 |
+
inputs=[
|
67 |
+
gr.Dropdown(["transformers", "gguf"], label="Model Type"),
|
68 |
+
gr.Textbox(label="Repo ID (e.g., TheBloke/Mistral-7B-Instruct-v0.1-GGUF)"),
|
69 |
+
gr.Textbox(label="Model File Name (only for GGUF)", placeholder="mistral.Q4_0.gguf"),
|
70 |
+
gr.Textbox(label="Test Prompt", value="What is the treatment for lumbar disc herniation?")
|
71 |
+
],
|
72 |
+
outputs=[
|
73 |
+
gr.Textbox(label="Model Output"),
|
74 |
+
gr.Textbox(label="Inference Time"),
|
75 |
+
gr.Textbox(label="CPU Usage"),
|
76 |
+
gr.Textbox(label="RAM Usage"),
|
77 |
+
gr.Textbox(label="Disk Usage (downloaded size)")
|
78 |
+
],
|
79 |
+
title="🧪 Model Benchmark Tester - HF CPU Space",
|
80 |
+
description="Input repo and model file name to benchmark GGUF or Transformers models."
|
81 |
+
).launch()
|