Spaces:
Runtime error
Runtime error
| import os | |
| import shutil | |
| import subprocess | |
| import signal | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub import whoami | |
| from huggingface_hub import ModelCard | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from textwrap import dedent | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| # library_username = os.environ.get("library_username").lower() | |
| HOME = os.environ.get("HOME") | |
| ollama_pubkey = open(f"{HOME}/.ollama/id_ed25519.pub", "r") | |
| def ollamafy_model(model_id, ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None, library_username: ollama_library_username | None): | |
| if oauth_token.token is None: | |
| raise ValueError("You must be logged in to use Ollamafy") | |
| # username = whoami(oauth_token.token)["name"] | |
| model_name = model_id.split('/')[-1] | |
| fp16 = f"{model_name}-fp16.gguf" | |
| try: | |
| api = HfApi(token=oauth_token.token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern += pattern | |
| if not os.path.isfile(fp16): | |
| api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Current working directory: {os.getcwd()}") | |
| print(f"Model directory contents: {os.listdir(model_name)}") | |
| conversion_script = "convert_hf_to_gguf.py" | |
| fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}" | |
| result = subprocess.run(fp16_conversion, shell=True, capture_output=True) | |
| print(result) | |
| if result.returncode != 0: | |
| raise Exception(f"Error converting to fp16: {result.stderr}") | |
| print("Model converted to fp16 successfully!") | |
| print(f"Converted model path: {fp16}") | |
| HfApi().delete_repo(repo_id=model_id) | |
| ### Ollamafy ### | |
| model_maintainer = model_id.split('/')[-2] | |
| ollama_model_name = model_maintainer.lower() + '_' + model_name.lower() | |
| ollama_modelfile_name = model_name + '_modelfile' | |
| # model_path = f"{HOME}/.cache/huggingface/hub/{model_id}" | |
| ollama_modelfile = open(ollama_modelfile_name, "w") | |
| # ollama_modelfile_path = quantized_gguf_path | |
| ollama_modelfile.write(quantized_gguf_path) | |
| ollama_modelfile.close() | |
| print(quantized_gguf_path) | |
| # for ollama_q_method in ollama_q_methods: | |
| if ollama_q_method == "FP16": | |
| ollama_conversion = f"ollama create -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}" | |
| else: | |
| ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {library_username}/{ollama_model_name}:{ollama_q_method.lower()}" | |
| ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True) | |
| print(ollama_conversion_result) | |
| if ollama_conversion_result.returncode != 0: | |
| raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}") | |
| else: | |
| print("Model converted to Ollama successfully!") | |
| if maintainer: | |
| ollama_push = f"ollama push {library_username}/{model_name}:{q_method.lower()}" | |
| ollama_rm = f"ollama rm {library_username}/{model_name}:{q_method.lower()}" | |
| else: | |
| ollama_push = f"ollama push {library_username}/{ollama_model_name}:{q_method.lower()}" | |
| ollama_rm = f"ollama rm {library_username}/{ollama_model_name}:{q_method.lower()}" | |
| ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True) | |
| print(ollama_push_result) | |
| if ollama_push_result.returncode != 0: | |
| raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}") | |
| else: | |
| print("Model pushed to Ollama library successfully!") | |
| ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True) | |
| print(ollama_rm_result) | |
| if ollama_rm_result.returncode != 0: | |
| raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}") | |
| else: | |
| print("Model pushed to Ollama library successfully!") | |
| if latest: | |
| ollama_copy = f"ollama cp {library_username}/{model_id.lower()}:{q_method.lower()} {library_username}/{model_id.lower()}:latest" | |
| ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True) | |
| print(ollama_copy_result) | |
| if ollama_copy_result.returncode != 0: | |
| raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}") | |
| print("Model pushed to Ollama library successfully!") | |
| if maintainer: | |
| ollama_push_latest = f"ollama push {library_username}/{model_name}:latest" | |
| ollama_rm_latest = f"ollama rm {library_username}/{model_name}:latest" | |
| else: | |
| ollama_push_latest = f"ollama push {library_username}/{ollama_model_name}:latest" | |
| ollama_rm_latest = f"ollama rm {library_username}/{ollama_model_name}:latest" | |
| ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True) | |
| print(ollama_push_latest_result) | |
| if ollama_push_latest_result.returncode != 0: | |
| raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}") | |
| else: | |
| print("Model pushed to Ollama library successfully!") | |
| ollama_rm_latest_result = subprocess.run(ollama_rm_latest, shell=True, capture_output=True) | |
| print(ollama_rm_latest_result) | |
| if ollama_rm_latest_result.returncode != 0: | |
| raise Exception(f"Error pushing to Ollama: {ollama_rm_latest.stderr}") | |
| else: | |
| print("Model pushed to Ollama library successfully!") | |
| except Exception as e: | |
| return (f"Error: {e}", "error.png") | |
| finally: | |
| shutil.rmtree(model_name, ignore_errors=True) | |
| print("Folder cleaned up successfully!") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| login = gr.LoginButton( | |
| min_width=250, | |
| ) | |
| account = gr.Code ( | |
| ollama_pubkey.read().rstrip(), | |
| label="Ollama SSH pubkey", | |
| # info="Copy this and paste it into your Ollama profile.", | |
| ) | |
| model_id = HuggingfaceHubSearch( | |
| label="Hugging Face Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| ollama_q_method = gr.Dropdown( | |
| ["FP16", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], | |
| label="Ollama Quantization Method", | |
| info="Chose which quantization will created and exported to the Ollama Library.", | |
| value="FP16" | |
| ) | |
| latest = gr.Checkbox( | |
| value=False, | |
| label="Latest", | |
| info="Push Model to the Ollama Library with the :latest tag." | |
| ) | |
| maintainer = gr.Checkbox( | |
| value=False, | |
| label="Maintainer", | |
| info="Use this option is your original repository on both Hugging Face and Ollama." | |
| ) | |
| ollama_library_username = gr.Textbox( | |
| label="Ollama Library Username", | |
| info="Input your username from Ollama to push this model to their Library.", | |
| ) | |
| iface = gr.Interface( | |
| fn=ollamafy_model, | |
| inputs=[ | |
| login, | |
| account, | |
| model_id, | |
| ollama_library_username, | |
| ollama_q_method, | |
| latest, | |
| maintainer | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| gr.Image(show_label=False), | |
| ], | |
| title="Ollamafy", | |
| description="Import Hugging Face Models to Ollama and Push them to the Ollama Library 🦙 \n\n Sampled from: \n\n - https://huggingface.co/spaces/ggml-org/gguf-my-repo \n\n - https://huggingface.co/spaces/gingdev/ollama-server", | |
| api_name=False | |
| ) | |
| def restart_space(): | |
| ollama_pubkey.close(), | |
| HfApi().restart_space(repo_id="unclemusclez/ollamafy", token=HF_TOKEN, library_username=OLLAMA_USERNAME, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |