Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
| 4 |
import signal
|
|
|
|
| 5 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 6 |
import gradio as gr
|
| 7 |
|
|
@@ -11,16 +12,12 @@ from huggingface_hub import whoami
|
|
| 11 |
from huggingface_hub import ModelCard
|
| 12 |
|
| 13 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 14 |
-
|
| 15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 16 |
-
|
| 17 |
from textwrap import dedent
|
| 18 |
|
| 19 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
|
| 21 |
ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
|
| 22 |
-
ollama_q_methods = ["FP16","Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"]
|
| 23 |
-
|
| 24 |
|
| 25 |
def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
| 26 |
if oauth_token.token is None:
|
|
@@ -30,9 +27,7 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
|
|
| 30 |
|
| 31 |
try:
|
| 32 |
api = HfApi(token=oauth_token.token)
|
| 33 |
-
|
| 34 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
| 35 |
-
|
| 36 |
pattern = (
|
| 37 |
"*.safetensors"
|
| 38 |
if any(
|
|
@@ -44,8 +39,8 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
|
|
| 44 |
)
|
| 45 |
else "*.bin"
|
| 46 |
)
|
| 47 |
-
|
| 48 |
dl_pattern += pattern
|
|
|
|
| 49 |
if not os.path.isfile(fp16):
|
| 50 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 51 |
print("Model downloaded successfully!")
|
|
@@ -81,11 +76,13 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
|
|
| 81 |
ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
| 82 |
else:
|
| 83 |
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
|
|
|
| 84 |
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
|
| 85 |
print(ollama_conversion_result)
|
| 86 |
if ollama_conversion_result.returncode != 0:
|
| 87 |
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
if maintainer:
|
| 91 |
ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
|
|
@@ -97,15 +94,17 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
|
|
| 97 |
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
|
| 98 |
print(ollama_push_result)
|
| 99 |
if ollama_push_result.returncode != 0:
|
| 100 |
-
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
|
| 101 |
-
|
|
|
|
| 102 |
|
| 103 |
ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True)
|
| 104 |
print(ollama_rm_result)
|
| 105 |
if ollama_rm_result.returncode != 0:
|
| 106 |
raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}")
|
| 107 |
-
|
| 108 |
-
|
|
|
|
| 109 |
|
| 110 |
if latest:
|
| 111 |
ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
|
|
@@ -115,7 +114,7 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
|
|
| 115 |
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
|
| 116 |
print("Model pushed to Ollama library successfully!")
|
| 117 |
|
| 118 |
-
if maintainer
|
| 119 |
ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
|
| 120 |
ollama_rm_latest = f"ollama rm {OLLAMA_USERNAME}/{model_name}:latest"
|
| 121 |
else:
|
|
@@ -159,7 +158,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 159 |
)
|
| 160 |
|
| 161 |
ollama_q_method = gr.Dropdown(
|
| 162 |
-
|
| 163 |
label="Ollama Lastest Quantization Method",
|
| 164 |
info="Chose which quantization will be labled with the latest tag in the Ollama Library",
|
| 165 |
value="FP16",
|
|
@@ -176,7 +175,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 176 |
maintainer = gr.Checkbox(
|
| 177 |
value=False,
|
| 178 |
label="Maintainer",
|
| 179 |
-
info="This is your original repository on both Hugging Face and Ollama.
|
| 180 |
)
|
| 181 |
|
| 182 |
iface = gr.Interface(
|
|
|
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
| 4 |
import signal
|
| 5 |
+
|
| 6 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 7 |
import gradio as gr
|
| 8 |
|
|
|
|
| 12 |
from huggingface_hub import ModelCard
|
| 13 |
|
| 14 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
|
|
| 15 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 16 |
from textwrap import dedent
|
| 17 |
|
| 18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 19 |
OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
|
| 20 |
ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
| 23 |
if oauth_token.token is None:
|
|
|
|
| 27 |
|
| 28 |
try:
|
| 29 |
api = HfApi(token=oauth_token.token)
|
|
|
|
| 30 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
|
|
|
| 31 |
pattern = (
|
| 32 |
"*.safetensors"
|
| 33 |
if any(
|
|
|
|
| 39 |
)
|
| 40 |
else "*.bin"
|
| 41 |
)
|
|
|
|
| 42 |
dl_pattern += pattern
|
| 43 |
+
|
| 44 |
if not os.path.isfile(fp16):
|
| 45 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 46 |
print("Model downloaded successfully!")
|
|
|
|
| 76 |
ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
| 77 |
else:
|
| 78 |
ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
|
| 79 |
+
|
| 80 |
ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
|
| 81 |
print(ollama_conversion_result)
|
| 82 |
if ollama_conversion_result.returncode != 0:
|
| 83 |
raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
|
| 84 |
+
else:
|
| 85 |
+
print("Model converted to Ollama successfully!")
|
| 86 |
|
| 87 |
if maintainer:
|
| 88 |
ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
|
|
|
|
| 94 |
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
|
| 95 |
print(ollama_push_result)
|
| 96 |
if ollama_push_result.returncode != 0:
|
| 97 |
+
raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
|
| 98 |
+
else:
|
| 99 |
+
print("Model pushed to Ollama library successfully!")
|
| 100 |
|
| 101 |
ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True)
|
| 102 |
print(ollama_rm_result)
|
| 103 |
if ollama_rm_result.returncode != 0:
|
| 104 |
raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}")
|
| 105 |
+
else:
|
| 106 |
+
print("Model pushed to Ollama library successfully!")
|
| 107 |
+
|
| 108 |
|
| 109 |
if latest:
|
| 110 |
ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
|
|
|
|
| 114 |
raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
|
| 115 |
print("Model pushed to Ollama library successfully!")
|
| 116 |
|
| 117 |
+
if maintainer:
|
| 118 |
ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
|
| 119 |
ollama_rm_latest = f"ollama rm {OLLAMA_USERNAME}/{model_name}:latest"
|
| 120 |
else:
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
ollama_q_method = gr.Dropdown(
|
| 161 |
+
["FP16", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
| 162 |
label="Ollama Lastest Quantization Method",
|
| 163 |
info="Chose which quantization will be labled with the latest tag in the Ollama Library",
|
| 164 |
value="FP16",
|
|
|
|
| 175 |
maintainer = gr.Checkbox(
|
| 176 |
value=False,
|
| 177 |
label="Maintainer",
|
| 178 |
+
info="This is your original repository on both Hugging Face and Ollama. DO NOT USE Unless same USERNAME on both platforms!!!"
|
| 179 |
)
|
| 180 |
|
| 181 |
iface = gr.Interface(
|