Spaces:
Running
Running
File size: 11,407 Bytes
5e8f045 4a43fed 5e8f045 4a43fed 5e8f045 4a43fed 5e8f045 4a43fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
리λ보λ ν UI μ»΄ν¬λνΈ
π Leaderboard νμ UIμ λ‘μ§μ κ΄λ¦¬ν©λλ€.
"""
import gradio as gr
import pandas as pd
from src.leaderboard_manager import load_leaderboard_data
def create_leaderboard_tab():
"""리λ보λ ν UI μμ±"""
# μ΅μλ¨ ν΅ν© κ²μ λ° - κ°μ λ λμμΈ
with gr.Row():
with gr.Column(scale=12):
search_input = gr.Textbox(
label="μ μΆμ μ΄λ¦ κ²μ",
placeholder="π μ μΆμ μ΄λ¦μΌλ‘ κ²μ...",
value="",
container=False,
elem_classes=["search-input"]
)
with gr.Column(scale=1, min_width=100):
clear_search_btn = gr.Button(
"ποΈ μ΄κΈ°ν",
variant="secondary",
size="sm",
elem_classes=["clear-search-btn"]
)
with gr.Column(scale=1, min_width=100):
refresh_btn = gr.Button(
"π μλ‘κ³ μΉ¨",
variant="primary",
size="sm",
elem_classes=["refresh-btn"]
)
# 리λ보λ λ
ΈμΆ μ»¬λΌ λ° νμλͺ
μ€μ
DISPLAY_COLUMNS = [
'rank',
'id',
'model',
'description',
'accuracy',
'fast_changing_accuracy',
'slow_changing_accuracy',
'never_changing_accuracy',
'acc_vp',
'acc_fp',
'acc_vp_one_hop',
'acc_vp_two_hop',
'acc_fp_one_hop',
'acc_fp_two_hop',
'acc_politics',
'acc_sports',
'acc_entertainment',
'acc_weather',
'acc_world',
'acc_economy',
'acc_society',
'acc_it_science',
'acc_life_culture',
'acc_unknown'
]
COLUMN_LABELS = {
'rank': 'Rank',
'id': 'ID',
'model': 'Model',
'description': 'Description',
'accuracy': 'Accuracy',
'fast_changing_accuracy': 'Fast-changing',
'slow_changing_accuracy': 'Slow-changing',
'never_changing_accuracy': 'Never-changing',
'acc_vp': 'Valid Premise',
'acc_fp': 'False Premise',
'acc_vp_one_hop': 'VP One-hop',
'acc_vp_two_hop': 'VP Multi-hop',
'acc_fp_one_hop': 'FP One-hop',
'acc_fp_two_hop': 'FP Multi-hop',
'acc_politics': 'Politics',
'acc_sports': 'Sports',
'acc_entertainment': 'Entertainment',
'acc_weather': 'Weather',
'acc_world': 'World',
'acc_economy': 'Economy',
'acc_society': 'Society',
'acc_it_science': 'IT/Science',
'acc_life_culture': 'Life/Culture',
'acc_unknown': 'Unknown'
}
def prepare_display_data(df: pd.DataFrame, global_ranking=None) -> pd.DataFrame:
"""ν
μ΄λΈ νμμ© λ°μ΄ν° μ€λΉ (rank κ³μ° λ° λ°μ¬λ¦Ό μ μ©)"""
# λΉ λ°μ΄ν°νλ μμΈ κ²½μ° κ·Έλλ‘ λ°ν
if df is None or df.empty:
return df if df is not None else pd.DataFrame()
display_df = df.copy()
# model / description κΈ°λ³Έκ° μ²λ¦¬
if "model" in display_df.columns:
display_df["model"] = display_df["model"].fillna("Anonymous Model")
display_df["model"] = display_df["model"].replace("", "Anonymous Model")
if "description" in display_df.columns:
display_df["description"] = (
display_df["description"]
.replace({None: "", pd.NA: ""})
.fillna("")
)
# rank μ»¬λΌ μΆκ°
if "accuracy" in display_df.columns:
if global_ranking is not None:
# μΈλΆμμ μ 체 λνΉ μ 보λ₯Ό μ 곡νλ κ²½μ°
display_df["rank"] = display_df.index.map(global_ranking)
else:
# accuracy κΈ°μ€μΌλ‘ μ λ ¬νμ¬ rank κ³μ°
display_df = display_df.sort_values("accuracy", ascending=False).reset_index(
drop=True
)
def get_rank_display(rank: int) -> str:
if rank == 1:
return "π₯"
elif rank == 2:
return "π₯"
elif rank == 3:
return "π₯"
else:
return str(rank)
display_df["rank"] = [get_rank_display(i + 1) for i in range(len(display_df))]
# μ«μ 컬λΌλ€μ μμ«μ 2λ²μ§Έμμ λ°μ¬λ¦Ό (νμμ©μΌλ‘λ§)
numeric_columns = [
"accuracy",
"fast_changing_accuracy",
"slow_changing_accuracy",
"never_changing_accuracy",
"acc_vp",
"acc_fp",
"acc_vp_one_hop",
"acc_vp_two_hop",
"acc_fp_one_hop",
"acc_fp_two_hop",
"acc_vp_old",
"acc_vp_new",
"acc_fp_old",
"acc_fp_new",
"acc_politics",
"acc_sports",
"acc_entertainment",
"acc_weather",
"acc_world",
"acc_economy",
"acc_society",
"acc_it_science",
"acc_life_culture",
"acc_unknown",
]
for col in numeric_columns:
if col in display_df.columns:
display_df[col] = display_df[col].round(2)
return display_df
def format_leaderboard(df: pd.DataFrame) -> pd.DataFrame:
"""리λ보λμ λ
ΈμΆν μ»¬λΌ μ ν λ° ν€λλͺ
λ³ν"""
if df.empty:
# λΉ DataFrameμΌ λλ μ»¬λΌ κ΅¬μ‘°λ₯Ό μ μ§νκΈ° μν΄ λΉ DataFrame μμ±
empty_df = pd.DataFrame(columns=DISPLAY_COLUMNS)
rename_map = {col: COLUMN_LABELS[col] for col in DISPLAY_COLUMNS if col in COLUMN_LABELS}
return empty_df.rename(columns=rename_map)
selected_columns = [col for col in DISPLAY_COLUMNS if col in df.columns]
formatted_df = df[selected_columns].copy()
rename_map = {col: COLUMN_LABELS[col] for col in selected_columns if col in COLUMN_LABELS}
return formatted_df.rename(columns=rename_map)
def build_leaderboard_state(source_df: pd.DataFrame):
"""리λ보λ νμμ© Relaxed/Strict λ°μ΄ν°μ λΉ μν μ¬λΆ λ°ν"""
if source_df is None:
source_df = pd.DataFrame()
if source_df.empty or 'evaluation_mode' not in source_df.columns:
relaxed_df = pd.DataFrame()
strict_df = pd.DataFrame()
else:
relaxed_df = source_df.query("evaluation_mode == 'Relaxed'")
strict_df = source_df.query("evaluation_mode == 'Strict'")
formatted_relaxed = format_leaderboard(prepare_display_data(relaxed_df))
formatted_strict = format_leaderboard(prepare_display_data(strict_df))
is_empty = relaxed_df.empty and strict_df.empty
return formatted_relaxed, formatted_strict, is_empty
# β
μ΄κΈ° κ° (μ± λΉλ μμ κΈ°μ€)
leaderboard_data = load_leaderboard_data()
relaxed_initial, strict_initial, is_initial_empty = build_leaderboard_state(leaderboard_data)
# Relaxed λͺ¨λ 리λ보λ
with gr.Column(elem_classes=["leaderboard-group"]):
gr.Markdown(
"### π’ Relaxed Evaluation"
)
relaxed_leaderboard_table = gr.DataFrame(
value=relaxed_initial,
interactive=False,
wrap=False,
show_label=False,
elem_classes=["leaderboard-table"]
)
# Strict λͺ¨λ 리λ보λ
with gr.Column(elem_classes=["leaderboard-group"]):
gr.Markdown(
"### π΄ Strict Evaluation"
)
strict_leaderboard_table = gr.DataFrame(
value=strict_initial,
interactive=False,
wrap=False,
show_label=False,
elem_classes=["leaderboard-table"]
)
# 리λ보λ κ΄λ ¨ μ€λͺ
with gr.Column(elem_classes=["leaderboard-group"]):
gr.Markdown("""
μ΄ λ¦¬λ보λλ [FreshQA](https://github.com/freshllms/freshqa)μμ μκ°μ λ°μ λ§λ€μ΄μ‘μ΅λλ€.
fact type(fast changing, slow changing, never changing), μ μ μ μ§μ€μ±,
10κ°μ λλ©μΈμ λ°λΌ λλλ μ§λ¬Έλ€μ ν΅ν΄ νκ΅μ΄ μ§μκ³Ό κ΄λ ¨λ LLMμ μ΅μ μ±μ νλ¨ν μ μμ΅λλ€.
μ΄ λ¦¬λ보λλ IITPμ **βμμ±ν μΈμ΄λͺ¨λΈμ μ§μκ°λ₯μ±κ³Ό μκ°μ νλ¦μ λ°λ₯Έ μ΅μ μ± λ°μμ μν νμ΅ λ° νμ© κΈ°μ κ°λ°β** μ¬μ
μ μ§μμ λ°μ μ μλμμ΅λλ€.
κ²°κ³Όμ 무결μ±Β·μ ν¨μ±μ μ μ§νκ³ **μμ μ‘°μμ λ°©μ§**νκΈ° μν΄ νκ° λ°μ΄ν°μ
μ μ λ΅μ κΈ°λ°λ‘ μ μ§λ©λλ€.
""")
# ν΅ν© κ²μ νν° ν¨μ (Relaxedμ Strict λͺ¨λ λͺ¨λ νν°λ§)
def filter_leaderboard_data(search_text):
"""Relaxedμ Strict λͺ¨λ 리λ보λ λ°μ΄ν° νν°λ§ (CSV κΈ°λ°)"""
try:
# CSVμμ μ 체 λ°μ΄ν° λ‘λ
all_df = load_leaderboard_data()
# κ²μ νν° μ μ© (μ μΆμ μ λ³΄λ§ κ²μ)
if search_text.strip() and 'id' in all_df.columns:
mask = all_df['id'].str.contains(search_text, case=False, na=False)
filtered_df = all_df[mask]
else:
filtered_df = all_df
formatted_relaxed, formatted_strict, _ = build_leaderboard_state(filtered_df)
return formatted_relaxed, formatted_strict
except Exception as e:
print(f"β 리λ보λ λ°μ΄ν° νν°λ§ μ€ν¨: {e}")
empty = pd.DataFrame()
return empty, empty
# κ²μ μ΄λ²€νΈ μ°κ²°
search_input.change(
fn=filter_leaderboard_data,
inputs=[search_input],
outputs=[relaxed_leaderboard_table, strict_leaderboard_table]
)
# κ²μ μ΄κΈ°ν λ²νΌ
def clear_search():
try:
all_df = load_leaderboard_data()
formatted_relaxed, formatted_strict, _ = build_leaderboard_state(all_df)
return "", formatted_relaxed, formatted_strict
except Exception as e:
print(f"β 리λ보λ λ°μ΄ν° λ‘λ μ€ν¨: {e}")
empty = pd.DataFrame()
return "", empty, empty
clear_search_btn.click(
fn=clear_search,
outputs=[search_input, relaxed_leaderboard_table, strict_leaderboard_table]
)
# μλ‘κ³ μΉ¨ λ²νΌ
def refresh_leaderboard():
try:
all_df = load_leaderboard_data()
formatted_relaxed, formatted_strict, is_empty = build_leaderboard_state(all_df)
return formatted_relaxed, formatted_strict
except Exception as e:
print(f"β 리λ보λ μλ‘κ³ μΉ¨ μ€ν¨: {e}")
empty = pd.DataFrame()
return empty, empty
refresh_btn.click(
fn=refresh_leaderboard,
outputs=[relaxed_leaderboard_table, strict_leaderboard_table]
)
# β
app.pyμμ μ΄κΈ° λ‘λ© μμλ μ¬μ¬μ©ν μ μλλ‘ return
return relaxed_leaderboard_table, strict_leaderboard_table, refresh_leaderboard
|