Spaces:
Runtime error
Runtime error
Boris Ustyugov
commited on
Commit
·
44cfbeb
1
Parent(s):
c455085
Add model files and exclude large training files with .gitignore
Browse files- .gitattributes +0 -35
- .gitignore +6 -0
- README.md +1 -1
- app.py +55 -4
- config.yaml +1 -0
- model_chekpoint/config.json +37 -0
- model_chekpoint/special_tokens_map.json +7 -0
- model_chekpoint/tokenizer.json +0 -0
- model_chekpoint/tokenizer_config.json +57 -0
- model_chekpoint/vocab.txt +0 -0
- utils.py +55 -0
.gitattributes
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Exclude large training files that aren't needed for inference
|
| 2 |
+
model_chekpoint/optimizer.pt
|
| 3 |
+
model_chekpoint/rng_state.pth
|
| 4 |
+
model_chekpoint/scheduler.pt
|
| 5 |
+
model_chekpoint/trainer_state.json
|
| 6 |
+
model_chekpoint/training_args.bin
|
README.md
CHANGED
|
@@ -10,4 +10,4 @@ pinned: false
|
|
| 10 |
short_description: ProsusAI/finbert finetuned just for test
|
| 11 |
---
|
| 12 |
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-
|
|
|
|
| 10 |
short_description: ProsusAI/finbert finetuned just for test
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-references
|
app.py
CHANGED
|
@@ -1,7 +1,58 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from utils import load_model_from_checkpoint, get_device
|
| 4 |
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def predict_sentiment(text):
|
| 7 |
+
"""
|
| 8 |
+
Predict sentiment of the input text using the loaded model.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
text (str): Input text to analyze
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
str: Sentiment prediction
|
| 15 |
+
"""
|
| 16 |
+
try:
|
| 17 |
+
# Load model and tokenizer
|
| 18 |
+
model, tokenizer = load_model_from_checkpoint()
|
| 19 |
+
device = get_device()
|
| 20 |
+
model = model.to(device)
|
| 21 |
+
|
| 22 |
+
# Tokenize input text
|
| 23 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 24 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 25 |
+
|
| 26 |
+
# Get prediction
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = model(**inputs)
|
| 29 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 30 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
| 31 |
+
|
| 32 |
+
# Map class to sentiment (adjust based on your model's classes)
|
| 33 |
+
sentiment_map = {0: "Negative", 1: "Positive", 2: "Neutral"}
|
| 34 |
+
sentiment = sentiment_map.get(predicted_class, "Unknown")
|
| 35 |
+
confidence = predictions[0][predicted_class].item()
|
| 36 |
+
|
| 37 |
+
return f"Sentiment: {sentiment} (Confidence: {confidence:.2f})"
|
| 38 |
+
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return f"Error: {str(e)}"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Create Gradio interface
|
| 44 |
+
demo = gr.Interface(
|
| 45 |
+
fn=predict_sentiment,
|
| 46 |
+
inputs="text",
|
| 47 |
+
outputs="text",
|
| 48 |
+
title="Financial Sentiment Analysis",
|
| 49 |
+
description="Enter financial text to analyze sentiment using the finetuned FinBERT model.",
|
| 50 |
+
examples=[
|
| 51 |
+
"The stock market is performing well today.",
|
| 52 |
+
"The company's earnings report was disappointing.",
|
| 53 |
+
"Investors are optimistic about the future prospects."
|
| 54 |
+
]
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch()
|
config.yaml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_path: "model_checkpoint"
|
model_chekpoint/config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ProsusAI/finbert",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "positive",
|
| 14 |
+
"1": "negative",
|
| 15 |
+
"2": "neutral"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"negative": 1,
|
| 21 |
+
"neutral": 2,
|
| 22 |
+
"positive": 0
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"position_embedding_type": "absolute",
|
| 31 |
+
"problem_type": "single_label_classification",
|
| 32 |
+
"torch_dtype": "float32",
|
| 33 |
+
"transformers_version": "4.46.3",
|
| 34 |
+
"type_vocab_size": 2,
|
| 35 |
+
"use_cache": true,
|
| 36 |
+
"vocab_size": 30522
|
| 37 |
+
}
|
model_chekpoint/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
model_chekpoint/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model_chekpoint/tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
model_chekpoint/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
utils.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_model_from_checkpoint():
|
| 8 |
+
"""
|
| 9 |
+
Load model from transformers checkpoint.
|
| 10 |
+
The checkpoint location is specified by model_path in config.yaml.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
tuple: (model, tokenizer) loaded from the checkpoint
|
| 14 |
+
"""
|
| 15 |
+
# Read config to get model_path
|
| 16 |
+
config_path = "config.yaml"
|
| 17 |
+
if not os.path.exists(config_path):
|
| 18 |
+
raise FileNotFoundError(f"Config file not found: {config_path}")
|
| 19 |
+
|
| 20 |
+
with open(config_path, 'r') as f:
|
| 21 |
+
config = yaml.safe_load(f)
|
| 22 |
+
|
| 23 |
+
model_path = config.get('model_path')
|
| 24 |
+
if not model_path:
|
| 25 |
+
raise ValueError("model_path not found in config.yaml")
|
| 26 |
+
|
| 27 |
+
# Check if checkpoint directory exists
|
| 28 |
+
if not os.path.exists(model_path):
|
| 29 |
+
raise FileNotFoundError(f"Model checkpoint not found at: {model_path}")
|
| 30 |
+
|
| 31 |
+
# Load tokenizer and model from the checkpoint
|
| 32 |
+
try:
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 34 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 35 |
+
|
| 36 |
+
# Set model to evaluation mode
|
| 37 |
+
model.eval()
|
| 38 |
+
|
| 39 |
+
return model, tokenizer
|
| 40 |
+
|
| 41 |
+
except Exception as e:
|
| 42 |
+
raise RuntimeError(f"Failed to load model from checkpoint {model_path}: {str(e)}")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_device():
|
| 46 |
+
"""
|
| 47 |
+
Get the appropriate device for model inference.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
torch.device: Device to use for inference
|
| 51 |
+
"""
|
| 52 |
+
if torch.cuda.is_available():
|
| 53 |
+
return torch.device('cuda')
|
| 54 |
+
else:
|
| 55 |
+
return torch.device('cpu')
|