Spaces:
Runtime error
Runtime error
Boris Ustyugov
commited on
Commit
·
5553133
1
Parent(s):
bbfb591
model load from hf model repo
Browse files- .gitattributes +0 -2
- .gitignore +4 -17
- app.py +10 -20
- config.json +0 -37
- model_chekpoint/config.json +0 -37
- model_chekpoint/special_tokens_map.json +0 -7
- model_chekpoint/tokenizer.json +0 -0
- model_chekpoint/tokenizer_config.json +0 -57
- model_chekpoint/vocab.txt +0 -0
- requirements.txt +5 -0
- special_tokens_map.json +0 -7
- tokenizer_config.json +0 -57
- upload_model.py +7 -0
- utils.py +13 -31
.gitattributes
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
.gitignore
CHANGED
|
@@ -1,17 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
model_chekpoint/trainer_state.json
|
| 6 |
-
model_chekpoint/training_args.bin
|
| 7 |
-
model_chekpoint/model.safetensors
|
| 8 |
-
|
| 9 |
-
# Exclude large files in root directory
|
| 10 |
-
model.safetensors
|
| 11 |
-
optimizer.pt
|
| 12 |
-
rng_state.pth
|
| 13 |
-
scheduler.pt
|
| 14 |
-
trainer_state.json
|
| 15 |
-
training_args.bin
|
| 16 |
-
tokenizer.json
|
| 17 |
-
vocab.txt
|
|
|
|
| 1 |
+
.venv/
|
| 2 |
+
__pycache__/
|
| 3 |
+
.idea
|
| 4 |
+
model_checkpoint/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from utils import load_model_from_checkpoint, get_device
|
| 4 |
|
| 5 |
|
| 6 |
def predict_sentiment(text):
|
| 7 |
"""
|
| 8 |
-
Predict sentiment of the input text using the loaded
|
| 9 |
|
| 10 |
Args:
|
| 11 |
text (str): Input text to analyze
|
|
@@ -14,25 +13,16 @@ def predict_sentiment(text):
|
|
| 14 |
str: Sentiment prediction
|
| 15 |
"""
|
| 16 |
try:
|
| 17 |
-
# Load
|
| 18 |
-
|
| 19 |
-
device = get_device()
|
| 20 |
-
model = model.to(device)
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
predicted_class = torch.argmax(predictions, dim=-1).item()
|
| 31 |
-
|
| 32 |
-
# Map class to sentiment (adjust based on your model's classes)
|
| 33 |
-
sentiment_map = {0: "Negative", 1: "Positive", 2: "Neutral"}
|
| 34 |
-
sentiment = sentiment_map.get(predicted_class, "Unknown")
|
| 35 |
-
confidence = predictions[0][predicted_class].item()
|
| 36 |
|
| 37 |
return f"Sentiment: {sentiment} (Confidence: {confidence:.2f})"
|
| 38 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from utils import load_pipeline_from_huggingface
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def predict_sentiment(text):
|
| 6 |
"""
|
| 7 |
+
Predict sentiment of the input text using the loaded pipeline.
|
| 8 |
|
| 9 |
Args:
|
| 10 |
text (str): Input text to analyze
|
|
|
|
| 13 |
str: Sentiment prediction
|
| 14 |
"""
|
| 15 |
try:
|
| 16 |
+
# Load pipeline
|
| 17 |
+
sentiment_pipeline = load_pipeline_from_huggingface()
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Get prediction using pipeline
|
| 20 |
+
results = sentiment_pipeline(text)
|
|
|
|
| 21 |
|
| 22 |
+
# Extract the highest confidence prediction
|
| 23 |
+
best_result = max(results[0], key=lambda x: x['score'])
|
| 24 |
+
sentiment = best_result['label']
|
| 25 |
+
confidence = best_result['score']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
return f"Sentiment: {sentiment} (Confidence: {confidence:.2f})"
|
| 28 |
|
config.json
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "ProsusAI/finbert",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"BertForSequenceClassification"
|
| 5 |
-
],
|
| 6 |
-
"attention_probs_dropout_prob": 0.1,
|
| 7 |
-
"classifier_dropout": null,
|
| 8 |
-
"gradient_checkpointing": false,
|
| 9 |
-
"hidden_act": "gelu",
|
| 10 |
-
"hidden_dropout_prob": 0.1,
|
| 11 |
-
"hidden_size": 768,
|
| 12 |
-
"id2label": {
|
| 13 |
-
"0": "positive",
|
| 14 |
-
"1": "negative",
|
| 15 |
-
"2": "neutral"
|
| 16 |
-
},
|
| 17 |
-
"initializer_range": 0.02,
|
| 18 |
-
"intermediate_size": 3072,
|
| 19 |
-
"label2id": {
|
| 20 |
-
"negative": 1,
|
| 21 |
-
"neutral": 2,
|
| 22 |
-
"positive": 0
|
| 23 |
-
},
|
| 24 |
-
"layer_norm_eps": 1e-12,
|
| 25 |
-
"max_position_embeddings": 512,
|
| 26 |
-
"model_type": "bert",
|
| 27 |
-
"num_attention_heads": 12,
|
| 28 |
-
"num_hidden_layers": 12,
|
| 29 |
-
"pad_token_id": 0,
|
| 30 |
-
"position_embedding_type": "absolute",
|
| 31 |
-
"problem_type": "single_label_classification",
|
| 32 |
-
"torch_dtype": "float32",
|
| 33 |
-
"transformers_version": "4.46.3",
|
| 34 |
-
"type_vocab_size": 2,
|
| 35 |
-
"use_cache": true,
|
| 36 |
-
"vocab_size": 30522
|
| 37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_chekpoint/config.json
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "ProsusAI/finbert",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"BertForSequenceClassification"
|
| 5 |
-
],
|
| 6 |
-
"attention_probs_dropout_prob": 0.1,
|
| 7 |
-
"classifier_dropout": null,
|
| 8 |
-
"gradient_checkpointing": false,
|
| 9 |
-
"hidden_act": "gelu",
|
| 10 |
-
"hidden_dropout_prob": 0.1,
|
| 11 |
-
"hidden_size": 768,
|
| 12 |
-
"id2label": {
|
| 13 |
-
"0": "positive",
|
| 14 |
-
"1": "negative",
|
| 15 |
-
"2": "neutral"
|
| 16 |
-
},
|
| 17 |
-
"initializer_range": 0.02,
|
| 18 |
-
"intermediate_size": 3072,
|
| 19 |
-
"label2id": {
|
| 20 |
-
"negative": 1,
|
| 21 |
-
"neutral": 2,
|
| 22 |
-
"positive": 0
|
| 23 |
-
},
|
| 24 |
-
"layer_norm_eps": 1e-12,
|
| 25 |
-
"max_position_embeddings": 512,
|
| 26 |
-
"model_type": "bert",
|
| 27 |
-
"num_attention_heads": 12,
|
| 28 |
-
"num_hidden_layers": 12,
|
| 29 |
-
"pad_token_id": 0,
|
| 30 |
-
"position_embedding_type": "absolute",
|
| 31 |
-
"problem_type": "single_label_classification",
|
| 32 |
-
"torch_dtype": "float32",
|
| 33 |
-
"transformers_version": "4.46.3",
|
| 34 |
-
"type_vocab_size": 2,
|
| 35 |
-
"use_cache": true,
|
| 36 |
-
"vocab_size": 30522
|
| 37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_chekpoint/special_tokens_map.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cls_token": "[CLS]",
|
| 3 |
-
"mask_token": "[MASK]",
|
| 4 |
-
"pad_token": "[PAD]",
|
| 5 |
-
"sep_token": "[SEP]",
|
| 6 |
-
"unk_token": "[UNK]"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_chekpoint/tokenizer.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model_chekpoint/tokenizer_config.json
DELETED
|
@@ -1,57 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "[PAD]",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": false,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": true
|
| 10 |
-
},
|
| 11 |
-
"100": {
|
| 12 |
-
"content": "[UNK]",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"101": {
|
| 20 |
-
"content": "[CLS]",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"102": {
|
| 28 |
-
"content": "[SEP]",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"103": {
|
| 36 |
-
"content": "[MASK]",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
}
|
| 43 |
-
},
|
| 44 |
-
"clean_up_tokenization_spaces": true,
|
| 45 |
-
"cls_token": "[CLS]",
|
| 46 |
-
"do_basic_tokenize": true,
|
| 47 |
-
"do_lower_case": true,
|
| 48 |
-
"mask_token": "[MASK]",
|
| 49 |
-
"model_max_length": 512,
|
| 50 |
-
"never_split": null,
|
| 51 |
-
"pad_token": "[PAD]",
|
| 52 |
-
"sep_token": "[SEP]",
|
| 53 |
-
"strip_accents": null,
|
| 54 |
-
"tokenize_chinese_chars": true,
|
| 55 |
-
"tokenizer_class": "BertTokenizer",
|
| 56 |
-
"unk_token": "[UNK]"
|
| 57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_chekpoint/vocab.txt
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
huggingface-hub
|
| 5 |
+
pyyaml
|
special_tokens_map.json
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cls_token": "[CLS]",
|
| 3 |
-
"mask_token": "[MASK]",
|
| 4 |
-
"pad_token": "[PAD]",
|
| 5 |
-
"sep_token": "[SEP]",
|
| 6 |
-
"unk_token": "[UNK]"
|
| 7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_config.json
DELETED
|
@@ -1,57 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "[PAD]",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": false,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": true
|
| 10 |
-
},
|
| 11 |
-
"100": {
|
| 12 |
-
"content": "[UNK]",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"101": {
|
| 20 |
-
"content": "[CLS]",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"102": {
|
| 28 |
-
"content": "[SEP]",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"103": {
|
| 36 |
-
"content": "[MASK]",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
}
|
| 43 |
-
},
|
| 44 |
-
"clean_up_tokenization_spaces": true,
|
| 45 |
-
"cls_token": "[CLS]",
|
| 46 |
-
"do_basic_tokenize": true,
|
| 47 |
-
"do_lower_case": true,
|
| 48 |
-
"mask_token": "[MASK]",
|
| 49 |
-
"model_max_length": 512,
|
| 50 |
-
"never_split": null,
|
| 51 |
-
"pad_token": "[PAD]",
|
| 52 |
-
"sep_token": "[SEP]",
|
| 53 |
-
"strip_accents": null,
|
| 54 |
-
"tokenize_chinese_chars": true,
|
| 55 |
-
"tokenizer_class": "BertTokenizer",
|
| 56 |
-
"unk_token": "[UNK]"
|
| 57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
upload_model.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import upload_folder
|
| 2 |
+
|
| 3 |
+
upload_folder(
|
| 4 |
+
repo_id="utyug1/finbert-finetuned-model",
|
| 5 |
+
folder_path="model_checkpoint",
|
| 6 |
+
repo_type="model",
|
| 7 |
+
)
|
utils.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
import yaml
|
| 3 |
-
from transformers import
|
| 4 |
-
import torch
|
| 5 |
|
| 6 |
|
| 7 |
-
def
|
| 8 |
"""
|
| 9 |
-
Load
|
| 10 |
-
The
|
| 11 |
|
| 12 |
Returns:
|
| 13 |
-
|
| 14 |
"""
|
| 15 |
# Read config to get model_path
|
| 16 |
config_path = "config.yaml"
|
|
@@ -24,32 +23,15 @@ def load_model_from_checkpoint():
|
|
| 24 |
if not model_path:
|
| 25 |
raise ValueError("model_path not found in config.yaml")
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
if not os.path.exists(model_path):
|
| 29 |
-
raise FileNotFoundError(f"Model checkpoint not found at: {model_path}")
|
| 30 |
-
|
| 31 |
-
# Load tokenizer and model from the checkpoint
|
| 32 |
try:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
-
return
|
| 40 |
|
| 41 |
except Exception as e:
|
| 42 |
-
raise RuntimeError(f"Failed to load
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def get_device():
|
| 46 |
-
"""
|
| 47 |
-
Get the appropriate device for model inference.
|
| 48 |
-
|
| 49 |
-
Returns:
|
| 50 |
-
torch.device: Device to use for inference
|
| 51 |
-
"""
|
| 52 |
-
if torch.cuda.is_available():
|
| 53 |
-
return torch.device('cuda')
|
| 54 |
-
else:
|
| 55 |
-
return torch.device('cpu')
|
|
|
|
| 1 |
import os
|
| 2 |
import yaml
|
| 3 |
+
from transformers import pipeline
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
+
def load_pipeline_from_huggingface():
|
| 7 |
"""
|
| 8 |
+
Load sentiment analysis pipeline from Hugging Face repository.
|
| 9 |
+
The repository name is specified by model_path in config.yaml.
|
| 10 |
|
| 11 |
Returns:
|
| 12 |
+
pipeline: Sentiment analysis pipeline loaded from Hugging Face
|
| 13 |
"""
|
| 14 |
# Read config to get model_path
|
| 15 |
config_path = "config.yaml"
|
|
|
|
| 23 |
if not model_path:
|
| 24 |
raise ValueError("model_path not found in config.yaml")
|
| 25 |
|
| 26 |
+
# Load pipeline from Hugging Face repository
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
try:
|
| 28 |
+
sentiment_pipeline = pipeline(
|
| 29 |
+
"sentiment-analysis",
|
| 30 |
+
model=model_path,
|
| 31 |
+
return_all_scores=True
|
| 32 |
+
)
|
| 33 |
|
| 34 |
+
return sentiment_pipeline
|
| 35 |
|
| 36 |
except Exception as e:
|
| 37 |
+
raise RuntimeError(f"Failed to load pipeline from Hugging Face repository {model_path}: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|