Spaces:
Sleeping
Sleeping
"""LangGraph Agent""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace, HuggingFaceEmbeddings | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.globals import set_debug | |
from langchain_groq import ChatGroq | |
from tools.search_tools import web_search, arvix_search, wiki_search | |
from tools.math_tools import multiply, add, subtract, divide | |
# from supabase.client import Client, create_client | |
# from langchain.tools.retriever import create_retriever_tool | |
# from langchain_community.vectorstores import SupabaseVectorStore | |
import json | |
from tools.multimodal_tools import extract_text, analyze_image_tool, analyze_audio_tool | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
# set_debug(True) | |
load_dotenv() | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
web_search, | |
wiki_search, | |
arvix_search, | |
extract_text, | |
analyze_image_tool, | |
analyze_audio_tool | |
] | |
def build_graph(): | |
hf_token = os.getenv("HF_TOKEN") | |
api_key = os.getenv("GEMINI_API_KEY") | |
# llm = HuggingFaceEndpoint( | |
# repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", | |
# huggingfacehub_api_token=hf_token, | |
# ) | |
# chat = ChatHuggingFace(llm=llm, verbose=True) | |
# llm_with_tools = chat.bind_tools(tools) | |
# llm = ChatGroq(model="qwen-qwq-32b", temperature=0) | |
# llm_with_tools = llm.bind_tools(tools) | |
chat = ChatGoogleGenerativeAI( | |
model= "gemini-2.5-pro-preview-05-06", | |
temperature=0, | |
max_retries=2, | |
google_api_key=api_key, | |
thinking_budget= 0 | |
) | |
chat_with_tools = chat.bind_tools(tools) | |
def assistant(state: MessagesState): | |
sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \ | |
"Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \ | |
"Your final output needs to be just the string or integer containing the answer, not an array or technical stuff." | |
return { | |
"messages": [chat_with_tools.invoke([sys_msg] + state["messages"])], | |
} | |
## The graph | |
builder = StateGraph(MessagesState) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
# If the latest message requires a tool, route to tools | |
# Otherwise, provide a direct response | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() | |
# test | |
if __name__ == "__main__": | |
graph = build_graph() | |
with open('sample.jsonl', 'r') as jsonl_file: | |
json_list = list(jsonl_file) | |
start = 10 #revisit 5, 8, | |
end = start + 1 | |
for json_str in json_list[start:end]: | |
json_data = json.loads(json_str) | |
print(f"Question::::::::: {json_data['Question']}") | |
print(f"Final answer::::: {json_data['Final answer']}") | |
question = json_data['Question'] | |
messages = [HumanMessage(content=question)] | |
messages = graph.invoke({"messages": messages}) | |
for m in messages["messages"]: | |
m.pretty_print() |