victor commited on
Commit
0b983db
·
1 Parent(s): 1f8f6b8
Files changed (1) hide show
  1. app.py +16 -21
app.py CHANGED
@@ -1,14 +1,14 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
- import os
5
 
6
- # load model
7
- model_path = os.path.join(os.getcwd(), "review_analysis/output")
8
- model = AutoModelForSequenceClassification.from_pretrained(model_path, local_files_only=True)
9
- tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
10
 
 
 
11
 
 
 
12
 
13
  # Define the inference function
14
  def predict_sentiment(text):
@@ -19,10 +19,9 @@ def predict_sentiment(text):
19
  return label_map[predicted_label]
20
 
21
  # Gradio interface set-up
 
22
  title = "Movie Review Sentiment Analysis"
23
- description = ("Enter a movie review and find out whether it's Positive or Negative! "
24
- "The fine-tuned distilbert-base-uncased model trained on the imdb dataset will try to classify your review.\n\n"
25
- "Below are some examples you can try!")
26
  review = gr.Textbox(lines=10, label="Enter your movie review here...")
27
  prediction = gr.Textbox(label="Sentiment Label (Prediction)")
28
  examples = [
@@ -31,15 +30,11 @@ examples = [
31
  ["Absolutely loved it! One of the best movies of all time"]
32
  ]
33
 
34
- # Create the Gradio interface
35
- intf = gr.Interface(
36
- fn=predict_sentiment,
37
- title=title,
38
- description=description,
39
- inputs=review,
40
- outputs=prediction,
41
- examples=examples
42
- )
43
 
44
- # Launch the interface
45
- intf.launch(inline=False)
 
 
 
1
  import torch
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
 
4
+ # Define the local model path
5
+ model_path = "./review_analysis/output"
 
 
6
 
7
+ # Load the tokenizer
8
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
9
 
10
+ # Load the model directly from the local path
11
+ model = AutoModelForSequenceClassification.from_pretrained(model_path)
12
 
13
  # Define the inference function
14
  def predict_sentiment(text):
 
19
  return label_map[predicted_label]
20
 
21
  # Gradio interface set-up
22
+ import gradio as gr
23
  title = "Movie Review Sentiment Analysis"
24
+ description = ("Enter a movie review and find out whether it's Positive or Negative!")
 
 
25
  review = gr.Textbox(lines=10, label="Enter your movie review here...")
26
  prediction = gr.Textbox(label="Sentiment Label (Prediction)")
27
  examples = [
 
30
  ["Absolutely loved it! One of the best movies of all time"]
31
  ]
32
 
33
+ intf = gr.Interface(fn=predict_sentiment,
34
+ title=title,
35
+ description=description,
36
+ inputs=review,
37
+ outputs=prediction,
38
+ examples=examples)
 
 
 
39
 
40
+ intf.launch(inline=False)