Spaces:
Running
Running
updated
Browse files- Dockerfile +4 -1
- agent.py +32 -12
- requirements.txt +3 -3
- st_app.py +1 -1
Dockerfile
CHANGED
@@ -7,12 +7,15 @@ COPY ./requirements.txt /app/requirements.txt
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
-
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
16 |
|
17 |
WORKDIR $HOME
|
18 |
RUN mkdir app
|
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
+
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
17 |
+
|
18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
19 |
|
20 |
WORKDIR $HOME
|
21 |
RUN mkdir app
|
agent.py
CHANGED
@@ -11,6 +11,7 @@ from vectara_agentic.agent import Agent
|
|
11 |
from vectara_agentic.agent_config import AgentConfig
|
12 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
13 |
from vectara_agentic.tools_catalog import ToolsCatalog
|
|
|
14 |
|
15 |
teaching_styles = ['Inquiry-based', 'Socratic', 'traditional']
|
16 |
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn',
|
@@ -22,8 +23,10 @@ class AgentTools:
|
|
22 |
self.tools_factory = ToolsFactory()
|
23 |
self.agent_config = agent_config
|
24 |
self.cfg = _cfg
|
25 |
-
self.vec_factory = VectaraToolFactory(
|
26 |
-
|
|
|
|
|
27 |
|
28 |
def adjust_response_to_student(
|
29 |
self,
|
@@ -54,23 +57,22 @@ class AgentTools:
|
|
54 |
|
55 |
|
56 |
def get_tools(self):
|
57 |
-
class JusticeHarvardArgs(BaseModel):
|
58 |
-
query: str = Field(..., description="The user query.")
|
59 |
-
|
60 |
vec_factory = VectaraToolFactory(vectara_api_key=self.cfg.api_key,vectara_corpus_key=self.cfg.corpus_key)
|
61 |
-
summarizer = 'vectara-summary-ext-
|
62 |
query_tool = vec_factory.create_rag_tool(
|
63 |
tool_name = "ask_about_justice_harvard",
|
64 |
tool_description = """
|
65 |
Answer questions about the justice, morality, politics and related topics,
|
66 |
based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics.
|
67 |
""",
|
68 |
-
|
69 |
-
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
70 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
71 |
-
summary_num_results =
|
|
|
72 |
vectara_summarizer = summarizer,
|
73 |
include_citations = True,
|
|
|
|
|
74 |
)
|
75 |
|
76 |
tools_factory = ToolsFactory()
|
@@ -80,7 +82,7 @@ class AgentTools:
|
|
80 |
self.adjust_response_to_student,
|
81 |
]
|
82 |
] +
|
83 |
-
tools_factory.standard_tools() +
|
84 |
tools_factory.guardrail_tools() +
|
85 |
[query_tool]
|
86 |
)
|
@@ -89,7 +91,8 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
89 |
bot_instructions = f"""
|
90 |
- You are a helpful teacher assistant, with expertise in education in various teaching styles.
|
91 |
- Obtain information using tools to answer the user's query.
|
92 |
-
- If the tool cannot provide information relevant to the user's query,
|
|
|
93 |
- If the tool can provide relevant information, use the adjust_response_to_student tool
|
94 |
to rephrase the text (including citations if any) to ensure it fits the student's age of {_cfg.student_age},
|
95 |
the {_cfg.style} teaching style and the {_cfg.language} language.
|
@@ -99,9 +102,26 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
99 |
- Response in a concise and clear manner, and provide the most relevant information to the student.
|
100 |
- Never discuss politics, and always respond politely.
|
101 |
"""
|
102 |
-
agent_config = AgentConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
agent = Agent(
|
104 |
agent_config=agent_config,
|
|
|
105 |
tools=AgentTools(_cfg, agent_config).get_tools(),
|
106 |
topic="justice, morality, politics, and philosophy",
|
107 |
custom_instructions=bot_instructions,
|
|
|
11 |
from vectara_agentic.agent_config import AgentConfig
|
12 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
13 |
from vectara_agentic.tools_catalog import ToolsCatalog
|
14 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
15 |
|
16 |
teaching_styles = ['Inquiry-based', 'Socratic', 'traditional']
|
17 |
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn',
|
|
|
23 |
self.tools_factory = ToolsFactory()
|
24 |
self.agent_config = agent_config
|
25 |
self.cfg = _cfg
|
26 |
+
self.vec_factory = VectaraToolFactory(
|
27 |
+
vectara_api_key=_cfg.api_key,
|
28 |
+
vectara_corpus_key=_cfg.corpus_key
|
29 |
+
)
|
30 |
|
31 |
def adjust_response_to_student(
|
32 |
self,
|
|
|
57 |
|
58 |
|
59 |
def get_tools(self):
|
|
|
|
|
|
|
60 |
vec_factory = VectaraToolFactory(vectara_api_key=self.cfg.api_key,vectara_corpus_key=self.cfg.corpus_key)
|
61 |
+
summarizer = 'vectara-summary-table-md-query-ext-jan-2025-gpt-4o'
|
62 |
query_tool = vec_factory.create_rag_tool(
|
63 |
tool_name = "ask_about_justice_harvard",
|
64 |
tool_description = """
|
65 |
Answer questions about the justice, morality, politics and related topics,
|
66 |
based on transcripts of recordings from the Justice Harvard class that includes a lot of content on these topics.
|
67 |
""",
|
68 |
+
reranker = "multilingual_reranker_v1", rerank_k = 100, rerank_cutoff = 0.3,
|
|
|
69 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
70 |
+
summary_num_results = 15,
|
71 |
+
max_tokens = 4096, max_response_chars = 8192,
|
72 |
vectara_summarizer = summarizer,
|
73 |
include_citations = True,
|
74 |
+
verbose = False,
|
75 |
+
save_history = True,
|
76 |
)
|
77 |
|
78 |
tools_factory = ToolsFactory()
|
|
|
82 |
self.adjust_response_to_student,
|
83 |
]
|
84 |
] +
|
85 |
+
tools_factory.standard_tools() +
|
86 |
tools_factory.guardrail_tools() +
|
87 |
[query_tool]
|
88 |
)
|
|
|
91 |
bot_instructions = f"""
|
92 |
- You are a helpful teacher assistant, with expertise in education in various teaching styles.
|
93 |
- Obtain information using tools to answer the user's query.
|
94 |
+
- If the tool cannot provide information relevant to the user's query, try calling the tool again with a rephrased query.
|
95 |
+
If it fails 3 times, then tell the user that you are unable to provide an answer.
|
96 |
- If the tool can provide relevant information, use the adjust_response_to_student tool
|
97 |
to rephrase the text (including citations if any) to ensure it fits the student's age of {_cfg.student_age},
|
98 |
the {_cfg.style} teaching style and the {_cfg.language} language.
|
|
|
102 |
- Response in a concise and clear manner, and provide the most relevant information to the student.
|
103 |
- Never discuss politics, and always respond politely.
|
104 |
"""
|
105 |
+
agent_config = AgentConfig(
|
106 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
107 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
108 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
109 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
110 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
111 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
112 |
+
)
|
113 |
+
fallback_agent_config = AgentConfig(
|
114 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
115 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
116 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
117 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
118 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
119 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
120 |
+
)
|
121 |
+
|
122 |
agent = Agent(
|
123 |
agent_config=agent_config,
|
124 |
+
fallback_agent_config=fallback_agent_config,
|
125 |
tools=AgentTools(_cfg, agent_config).get_tools(),
|
126 |
topic="justice, morality, politics, and philosophy",
|
127 |
custom_instructions=bot_instructions,
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_pills==0.3.0
|
5 |
streamlit_feedback==0.1.3
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
-
vectara-agentic==0.2.
|
10 |
-
torch==2.6.0
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.45.0
|
4 |
streamlit_pills==0.3.0
|
5 |
streamlit_feedback==0.1.3
|
6 |
uuid==1.30
|
7 |
langdetect==1.0.9
|
8 |
langcodes==3.4.0
|
9 |
+
vectara-agentic==0.2.15
|
10 |
+
torch==2.6.0
|
st_app.py
CHANGED
@@ -153,7 +153,7 @@ async def launch_bot():
|
|
153 |
if st.session_state.prompt:
|
154 |
with st.chat_message("assistant", avatar='🤖'):
|
155 |
st.session_state.status = st.status('Processing...', expanded=False)
|
156 |
-
response = st.session_state.agent.
|
157 |
res = escape_dollars_outside_latex(response.response)
|
158 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
159 |
st.session_state.messages.append(message)
|
|
|
153 |
if st.session_state.prompt:
|
154 |
with st.chat_message("assistant", avatar='🤖'):
|
155 |
st.session_state.status = st.status('Processing...', expanded=False)
|
156 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
157 |
res = escape_dollars_outside_latex(response.response)
|
158 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
159 |
st.session_state.messages.append(message)
|