Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,42 @@
|
|
1 |
import os
|
2 |
import numpy as np
|
3 |
-
from tqdm import tqdm
|
4 |
import tensorflow as tf
|
|
|
|
|
5 |
import typing
|
6 |
-
import
|
7 |
-
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
#settings.py迁移
|
14 |
-
# 内容特征层及loss加权系数
|
15 |
CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5}
|
16 |
-
|
17 |
-
STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2,
|
18 |
-
'block5_conv1': 0.2}
|
19 |
-
# 内容图片路径
|
20 |
-
#CONTENT_IMAGE_PATH = './images/content.jpg'
|
21 |
-
CONTENT_IMAGE_PATH = input("image path:")
|
22 |
-
# 风格图片路径
|
23 |
-
# STYLE_IMAGE_PATH = './images/style.jpg'
|
24 |
-
STYLE_IMAGE_PATH = input('style image path:')
|
25 |
-
# 生成图片的保存目录
|
26 |
-
# OUTPUT_DIR = './output'
|
27 |
-
OUTPUT_DIR = input('output path:')
|
28 |
|
29 |
-
# 内容loss总加权系数
|
30 |
CONTENT_LOSS_FACTOR = 1
|
31 |
-
# 风格loss总加权系数
|
32 |
STYLE_LOSS_FACTOR = 100
|
33 |
|
34 |
-
# 图片宽度
|
35 |
WIDTH = 450
|
36 |
-
# 图片高度
|
37 |
HEIGHT = 300
|
38 |
-
|
39 |
-
# 训练epoch数
|
40 |
EPOCHS = 20
|
41 |
-
# 每个epoch训练多少次
|
42 |
STEPS_PER_EPOCH = 100
|
43 |
-
# 学习率
|
44 |
LEARNING_RATE = 0.03
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
#utils.py迁移
|
53 |
-
# 我们准备使用经典网络在imagenet数据集上的与训练权重,所以归一化时也要使用imagenet的平均值和标准差
|
54 |
-
print("utils")
|
55 |
image_mean = tf.constant([0.485, 0.456, 0.406])
|
56 |
image_std = tf.constant([0.299, 0.224, 0.225])
|
57 |
|
58 |
-
|
59 |
def normalization(x):
|
60 |
-
"""
|
61 |
-
对输入图片x进行归一化,返回归一化的值
|
62 |
-
"""
|
63 |
return (x - image_mean) / image_std
|
64 |
|
65 |
-
|
66 |
def load_images(image_path, width=WIDTH, height=HEIGHT):
|
67 |
-
"""
|
68 |
-
加载并处理图片
|
69 |
-
:param image_path: 图片路径
|
70 |
-
:param width: 图片宽度
|
71 |
-
:param height: 图片长度
|
72 |
-
:return: 一个张量
|
73 |
-
"""
|
74 |
-
# 加载文件
|
75 |
x = tf.io.read_file(image_path)
|
76 |
-
# 解码图片
|
77 |
x = tf.image.decode_jpeg(x, channels=3)
|
78 |
-
# 修改图片大小
|
79 |
x = tf.image.resize(x, [height, width])
|
80 |
x = x / 255.
|
81 |
-
# 归一化
|
82 |
x = normalization(x)
|
83 |
x = tf.reshape(x, [1, height, width, 3])
|
84 |
-
# 返回结果
|
85 |
return x
|
86 |
|
87 |
-
|
88 |
def save_image(image, filename):
|
89 |
x = tf.reshape(image, image.shape[1:])
|
90 |
x = x * image_std + image_mean
|
@@ -95,201 +47,118 @@ def save_image(image, filename):
|
|
95 |
x = tf.image.encode_jpeg(x)
|
96 |
tf.io.write_file(filename, x)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
#model.py迁移
|
106 |
-
print("models.py")
|
107 |
def get_vgg19_model(layers):
|
108 |
-
"""
|
109 |
-
创建并初始化vgg19模型
|
110 |
-
:return:
|
111 |
-
"""
|
112 |
-
# 加载imagenet上预训练的vgg19
|
113 |
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
|
114 |
-
# 提取需要被用到的vgg的层的output
|
115 |
outputs = [vgg.get_layer(layer).output for layer in layers]
|
116 |
-
# 使用outputs创建新的模型
|
117 |
model = tf.keras.Model([vgg.input, ], outputs)
|
118 |
-
# 锁死参数,不进行训练
|
119 |
model.trainable = False
|
120 |
return model
|
121 |
|
122 |
-
|
123 |
class NeuralStyleTransferModel(tf.keras.Model):
|
124 |
-
|
125 |
-
def __init__(self, content_layers: typing.Dict[str, float] = CONTENT_LAYERS,
|
126 |
-
style_layers: typing.Dict[str, float] = STYLE_LAYERS):
|
127 |
super(NeuralStyleTransferModel, self).__init__()
|
128 |
-
# 内容特征层字典 Dict[层名,加权系数]
|
129 |
self.content_layers = content_layers
|
130 |
-
# 风格特征层
|
131 |
self.style_layers = style_layers
|
132 |
-
# 提取需要用到的所有vgg层
|
133 |
layers = list(self.content_layers.keys()) + list(self.style_layers.keys())
|
134 |
-
# 创建layer_name到output索引的映射
|
135 |
self.outputs_index_map = dict(zip(layers, range(len(layers))))
|
136 |
-
# 创建并初始化vgg网络
|
137 |
self.vgg = get_vgg19_model(layers)
|
138 |
|
139 |
def call(self, inputs, training=None, mask=None):
|
140 |
-
"""
|
141 |
-
前向传播
|
142 |
-
:return
|
143 |
-
typing.Dict[str,typing.List[outputs,加权系数]]
|
144 |
-
"""
|
145 |
outputs = self.vgg(inputs)
|
146 |
-
# 分离内容特征层和风格特征层的输出,方便后续计算 typing.List[outputs,加权系数]
|
147 |
content_outputs = []
|
148 |
for layer, factor in self.content_layers.items():
|
149 |
content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
|
150 |
style_outputs = []
|
151 |
for layer, factor in self.style_layers.items():
|
152 |
style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
|
153 |
-
# 以字典的形式返回输出
|
154 |
return {'content': content_outputs, 'style': style_outputs}
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
# 创建模型
|
164 |
-
model = NeuralStyleTransferModel()
|
165 |
-
|
166 |
-
print("进入主程序")
|
167 |
-
|
168 |
-
# 加载内容图片
|
169 |
-
content_image = load_images(CONTENT_IMAGE_PATH)
|
170 |
-
# 风格图片
|
171 |
-
style_image = load_images(STYLE_IMAGE_PATH)
|
172 |
-
|
173 |
-
# 计算出目标内容图片���内容特征备用
|
174 |
-
target_content_features = model([content_image, ])['content']
|
175 |
-
# 计算目标风格图片的风格特征
|
176 |
-
target_style_features = model([style_image, ])['style']
|
177 |
-
|
178 |
-
M = WIDTH * HEIGHT
|
179 |
-
N = 3
|
180 |
-
|
181 |
-
|
182 |
def _compute_content_loss(noise_features, target_features):
|
183 |
-
"""
|
184 |
-
计算指定层上两个特征之间的内容loss
|
185 |
-
:param noise_features: 噪声图片在指定层的特征
|
186 |
-
:param target_features: 内容图片在指定层的特征
|
187 |
-
"""
|
188 |
content_loss = tf.reduce_sum(tf.square(noise_features - target_features))
|
189 |
-
|
190 |
-
x = 2. * M * N
|
191 |
content_loss = content_loss / x
|
192 |
return content_loss
|
193 |
|
194 |
-
|
195 |
-
def compute_content_loss(noise_content_features):
|
196 |
-
"""
|
197 |
-
计算并当前图片的内容loss
|
198 |
-
:param noise_content_features: 噪声图片的内容特征
|
199 |
-
"""
|
200 |
-
# 初始化内容损失
|
201 |
content_losses = []
|
202 |
-
# 加权计算内容损失
|
203 |
for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features):
|
204 |
layer_content_loss = _compute_content_loss(noise_feature, target_feature)
|
205 |
content_losses.append(layer_content_loss * factor)
|
206 |
return tf.reduce_sum(content_losses)
|
207 |
|
208 |
-
|
209 |
def gram_matrix(feature):
|
210 |
-
"""
|
211 |
-
计算给定特征的格拉姆矩阵
|
212 |
-
"""
|
213 |
-
# 先交换维度,把channel维度提到最前面
|
214 |
x = tf.transpose(feature, perm=[2, 0, 1])
|
215 |
-
# reshape,压缩成2d
|
216 |
x = tf.reshape(x, (x.shape[0], -1))
|
217 |
-
# 计算x和x的逆的乘积
|
218 |
return x @ tf.transpose(x)
|
219 |
|
220 |
-
|
221 |
def _compute_style_loss(noise_feature, target_feature):
|
222 |
-
"""
|
223 |
-
计算指定层上两个特征之间的风格loss
|
224 |
-
:param noise_feature: 噪声图片在指定层的特征
|
225 |
-
:param target_feature: 风格图片在指定层的特征
|
226 |
-
"""
|
227 |
noise_gram_matrix = gram_matrix(noise_feature)
|
228 |
style_gram_matrix = gram_matrix(target_feature)
|
229 |
style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix))
|
230 |
-
|
231 |
-
x = 4. * (M ** 2) * (N ** 2)
|
232 |
return style_loss / x
|
233 |
|
234 |
-
|
235 |
-
def compute_style_loss(noise_style_features):
|
236 |
-
"""
|
237 |
-
计算并返回图片的风格loss
|
238 |
-
:param noise_style_features: 噪声图片的风格特征
|
239 |
-
"""
|
240 |
style_losses = []
|
241 |
for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features):
|
242 |
layer_style_loss = _compute_style_loss(noise_feature, target_feature)
|
243 |
style_losses.append(layer_style_loss * factor)
|
244 |
return tf.reduce_sum(style_losses)
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
计算总损失
|
250 |
-
:param noise_features: 噪声图片特征数据
|
251 |
-
"""
|
252 |
-
content_loss = compute_content_loss(noise_features['content'])
|
253 |
-
style_loss = compute_style_loss(noise_features['style'])
|
254 |
return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR
|
255 |
|
256 |
-
|
257 |
-
# 使用Adma优化器
|
258 |
optimizer = tf.keras.optimizers.Adam(LEARNING_RATE)
|
|
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
@tf.function
|
266 |
-
def train_one_step():
|
267 |
-
"""
|
268 |
-
一次迭代过程
|
269 |
-
"""
|
270 |
-
# 求loss
|
271 |
-
with tf.GradientTape() as tape:
|
272 |
-
noise_outputs = model(noise_image)
|
273 |
-
loss = total_loss(noise_outputs)
|
274 |
-
# 求梯度
|
275 |
-
grad = tape.gradient(loss, noise_image)
|
276 |
-
# 梯度下降,更新噪声图片
|
277 |
-
optimizer.apply_gradients([(grad, noise_image)])
|
278 |
-
return loss
|
279 |
|
|
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
for epoch in range(EPOCHS):
|
287 |
-
# 使用tqdm提示训练进度
|
288 |
-
with tqdm(total=STEPS_PER_EPOCH, desc='Epoch {}/{}'.format(epoch + 1, EPOCHS)) as pbar:
|
289 |
-
# 每个epoch训练STEPS_PER_EPOCH次
|
290 |
for step in range(STEPS_PER_EPOCH):
|
291 |
_loss = train_one_step()
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import numpy as np
|
|
|
3 |
import tensorflow as tf
|
4 |
+
from tqdm import tqdm
|
5 |
+
import gradio as gr
|
6 |
import typing
|
7 |
+
from huggingface_hub import HfApi, Repository
|
8 |
+
import tempfile
|
9 |
|
10 |
+
# 定义模型和辅助函数
|
11 |
+
print("Importing necessary libraries and defining functions...")
|
12 |
|
|
|
|
|
|
|
|
|
13 |
CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5}
|
14 |
+
STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2, 'block5_conv1': 0.2}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
CONTENT_LOSS_FACTOR = 1
|
|
|
17 |
STYLE_LOSS_FACTOR = 100
|
18 |
|
|
|
19 |
WIDTH = 450
|
|
|
20 |
HEIGHT = 300
|
|
|
|
|
21 |
EPOCHS = 20
|
|
|
22 |
STEPS_PER_EPOCH = 100
|
|
|
23 |
LEARNING_RATE = 0.03
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
image_mean = tf.constant([0.485, 0.456, 0.406])
|
26 |
image_std = tf.constant([0.299, 0.224, 0.225])
|
27 |
|
|
|
28 |
def normalization(x):
|
|
|
|
|
|
|
29 |
return (x - image_mean) / image_std
|
30 |
|
|
|
31 |
def load_images(image_path, width=WIDTH, height=HEIGHT):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
x = tf.io.read_file(image_path)
|
|
|
33 |
x = tf.image.decode_jpeg(x, channels=3)
|
|
|
34 |
x = tf.image.resize(x, [height, width])
|
35 |
x = x / 255.
|
|
|
36 |
x = normalization(x)
|
37 |
x = tf.reshape(x, [1, height, width, 3])
|
|
|
38 |
return x
|
39 |
|
|
|
40 |
def save_image(image, filename):
|
41 |
x = tf.reshape(image, image.shape[1:])
|
42 |
x = x * image_std + image_mean
|
|
|
47 |
x = tf.image.encode_jpeg(x)
|
48 |
tf.io.write_file(filename, x)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def get_vgg19_model(layers):
|
|
|
|
|
|
|
|
|
|
|
51 |
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
|
|
|
52 |
outputs = [vgg.get_layer(layer).output for layer in layers]
|
|
|
53 |
model = tf.keras.Model([vgg.input, ], outputs)
|
|
|
54 |
model.trainable = False
|
55 |
return model
|
56 |
|
|
|
57 |
class NeuralStyleTransferModel(tf.keras.Model):
|
58 |
+
def __init__(self, content_layers=CONTENT_LAYERS, style_layers=STYLE_LAYERS):
|
|
|
|
|
59 |
super(NeuralStyleTransferModel, self).__init__()
|
|
|
60 |
self.content_layers = content_layers
|
|
|
61 |
self.style_layers = style_layers
|
|
|
62 |
layers = list(self.content_layers.keys()) + list(self.style_layers.keys())
|
|
|
63 |
self.outputs_index_map = dict(zip(layers, range(len(layers))))
|
|
|
64 |
self.vgg = get_vgg19_model(layers)
|
65 |
|
66 |
def call(self, inputs, training=None, mask=None):
|
|
|
|
|
|
|
|
|
|
|
67 |
outputs = self.vgg(inputs)
|
|
|
68 |
content_outputs = []
|
69 |
for layer, factor in self.content_layers.items():
|
70 |
content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
|
71 |
style_outputs = []
|
72 |
for layer, factor in self.style_layers.items():
|
73 |
style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
|
|
|
74 |
return {'content': content_outputs, 'style': style_outputs}
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def _compute_content_loss(noise_features, target_features):
|
|
|
|
|
|
|
|
|
|
|
77 |
content_loss = tf.reduce_sum(tf.square(noise_features - target_features))
|
78 |
+
x = 2. * WIDTH * HEIGHT * 3
|
|
|
79 |
content_loss = content_loss / x
|
80 |
return content_loss
|
81 |
|
82 |
+
def compute_content_loss(noise_content_features, target_content_features):
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
content_losses = []
|
|
|
84 |
for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features):
|
85 |
layer_content_loss = _compute_content_loss(noise_feature, target_feature)
|
86 |
content_losses.append(layer_content_loss * factor)
|
87 |
return tf.reduce_sum(content_losses)
|
88 |
|
|
|
89 |
def gram_matrix(feature):
|
|
|
|
|
|
|
|
|
90 |
x = tf.transpose(feature, perm=[2, 0, 1])
|
|
|
91 |
x = tf.reshape(x, (x.shape[0], -1))
|
|
|
92 |
return x @ tf.transpose(x)
|
93 |
|
|
|
94 |
def _compute_style_loss(noise_feature, target_feature):
|
|
|
|
|
|
|
|
|
|
|
95 |
noise_gram_matrix = gram_matrix(noise_feature)
|
96 |
style_gram_matrix = gram_matrix(target_feature)
|
97 |
style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix))
|
98 |
+
x = 4. * (WIDTH * HEIGHT) ** 2 * 3 ** 2
|
|
|
99 |
return style_loss / x
|
100 |
|
101 |
+
def compute_style_loss(noise_style_features, target_style_features):
|
|
|
|
|
|
|
|
|
|
|
102 |
style_losses = []
|
103 |
for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features):
|
104 |
layer_style_loss = _compute_style_loss(noise_feature, target_feature)
|
105 |
style_losses.append(layer_style_loss * factor)
|
106 |
return tf.reduce_sum(style_losses)
|
107 |
|
108 |
+
def total_loss(noise_features, target_content_features, target_style_features):
|
109 |
+
content_loss = compute_content_loss(noise_features['content'], target_content_features)
|
110 |
+
style_loss = compute_style_loss(noise_features['style'], target_style_features)
|
|
|
|
|
|
|
|
|
|
|
111 |
return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR
|
112 |
|
|
|
|
|
113 |
optimizer = tf.keras.optimizers.Adam(LEARNING_RATE)
|
114 |
+
model = NeuralStyleTransferModel()
|
115 |
|
116 |
+
def neural_style_transfer(content_image_path, style_image_path):
|
117 |
+
content_image = load_images(content_image_path)
|
118 |
+
style_image = load_images(style_image_path)
|
119 |
+
target_content_features = model([content_image, ])['content']
|
120 |
+
target_style_features = model([style_image, ])['style']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
noise_image = tf.Variable((content_image + np.random.uniform(-0.2, 0.2, (1, HEIGHT, WIDTH, 3))) / 2)
|
123 |
|
124 |
+
@tf.function
|
125 |
+
def train_one_step():
|
126 |
+
with tf.GradientTape() as tape:
|
127 |
+
noise_outputs = model(noise_image)
|
128 |
+
loss = total_loss(noise_outputs, target_content_features, target_style_features)
|
129 |
+
grad = tape.gradient(loss, noise_image)
|
130 |
+
optimizer.apply_gradients([(grad, noise_image)])
|
131 |
+
return loss
|
132 |
|
133 |
+
for epoch in range(EPOCHS):
|
|
|
|
|
|
|
|
|
134 |
for step in range(STEPS_PER_EPOCH):
|
135 |
_loss = train_one_step()
|
136 |
+
|
137 |
+
output_image_path = tempfile.mktemp(suffix='.jpg')
|
138 |
+
save_image(noise_image, output_image_path)
|
139 |
+
return output_image_path
|
140 |
+
|
141 |
+
def transfer_style(content_image, style_image):
|
142 |
+
content_image_path = tempfile.mktemp(suffix='.jpg')
|
143 |
+
style_image_path = tempfile.mktemp(suffix='.jpg')
|
144 |
+
|
145 |
+
content_image.save(content_image_path)
|
146 |
+
style_image.save(style_image_path)
|
147 |
+
|
148 |
+
output_image_path = neural_style_transfer(content_image_path, style_image_path)
|
149 |
+
return output_image_path
|
150 |
+
|
151 |
+
# 创建Gradio界面
|
152 |
+
iface = gr.Interface(
|
153 |
+
fn=transfer_style,
|
154 |
+
inputs=[
|
155 |
+
gr.inputs.Image(type="pil", label="Content Image"),
|
156 |
+
gr.inputs.Image(type="pil", label="Style Image")
|
157 |
+
],
|
158 |
+
outputs=gr.outputs.Image(type="file", label="Styled Image"),
|
159 |
+
title="Neural Style Transfer",
|
160 |
+
description="Upload a content image and a style image to perform neural style transfer."
|
161 |
+
)
|
162 |
+
|
163 |
+
# 运行Gradio应用
|
164 |
+
iface.launch()
|