Update app.py
Browse filesmade marathi the default language
app.py
CHANGED
|
@@ -1,3 +1,192 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
gr.load("models/facebook/mms-tts-mar").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
gr.load("models/facebook/mms-tts-mar").launch()
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
def _grab_best_device(use_gpu=True):
|
| 14 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
| 15 |
+
device = "cuda"
|
| 16 |
+
else:
|
| 17 |
+
device = "cpu"
|
| 18 |
+
return device
|
| 19 |
+
|
| 20 |
+
device = _grab_best_device()
|
| 21 |
+
|
| 22 |
+
default_model_per_language = {
|
| 23 |
+
"marathi": "facebook/mms-tts-mar"
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
models_per_language = {
|
| 27 |
+
"marathi": ["ylacombe/mms-mar-finetuned-monospeaker"]
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
pipe_dict = {
|
| 34 |
+
"current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
|
| 35 |
+
"pipe": pipeline("text-to-speech", model=HUB_PATH, device=0),
|
| 36 |
+
"original_pipe": pipeline("text-to-speech", model=default_model_per_language["marathi"], device=0),
|
| 37 |
+
"language": "english",
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
title = """
|
| 41 |
+
# Explore MMS finetuning
|
| 42 |
+
## Or how to access truely multilingual TTS
|
| 43 |
+
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
|
| 44 |
+
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
|
| 45 |
+
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
|
| 46 |
+
|
| 47 |
+
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
|
| 48 |
+
Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
max_speakers = 1
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Inference
|
| 55 |
+
def generate_audio(text, model_id, language):
|
| 56 |
+
|
| 57 |
+
if pipe_dict["language"] != language:
|
| 58 |
+
gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
|
| 59 |
+
pipe_dict["language"] = language
|
| 60 |
+
pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=0)
|
| 61 |
+
|
| 62 |
+
if pipe_dict["current_model"] != model_id:
|
| 63 |
+
gr.Warning("Model has changed - loading new model")
|
| 64 |
+
pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=0)
|
| 65 |
+
pipe_dict["current_model"] = model_id
|
| 66 |
+
|
| 67 |
+
num_speakers = pipe_dict["pipe"].model.config.num_speakers
|
| 68 |
+
|
| 69 |
+
out = []
|
| 70 |
+
# first generate original model result
|
| 71 |
+
output = pipe_dict["original_pipe"](text)
|
| 72 |
+
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
|
| 73 |
+
visible=True)
|
| 74 |
+
out.append(output)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
if num_speakers>1:
|
| 78 |
+
for i in range(min(num_speakers, max_speakers - 1)):
|
| 79 |
+
forward_params = {"speaker_id": i}
|
| 80 |
+
output = pipe_dict["pipe"](text, forward_params=forward_params)
|
| 81 |
+
|
| 82 |
+
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
|
| 83 |
+
visible=True)
|
| 84 |
+
out.append(output)
|
| 85 |
+
out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
|
| 86 |
+
else:
|
| 87 |
+
output = pipe_dict["pipe"](text)
|
| 88 |
+
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
|
| 89 |
+
visible=True)
|
| 90 |
+
out.append(output)
|
| 91 |
+
out.extend([gr.Audio(visible=False)]*(max_speakers-2))
|
| 92 |
+
return out
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
css = """
|
| 96 |
+
#container{
|
| 97 |
+
margin: 0 auto;
|
| 98 |
+
max-width: 80rem;
|
| 99 |
+
}
|
| 100 |
+
#intro{
|
| 101 |
+
max-width: 100%;
|
| 102 |
+
text-align: center;
|
| 103 |
+
margin: 0 auto;
|
| 104 |
+
}
|
| 105 |
+
"""
|
| 106 |
+
# Gradio blocks demo
|
| 107 |
+
with gr.Blocks(css=css) as demo_blocks:
|
| 108 |
+
gr.Markdown(title, elem_id="intro")
|
| 109 |
+
|
| 110 |
+
with gr.Row():
|
| 111 |
+
with gr.Column():
|
| 112 |
+
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
|
| 113 |
+
btn = gr.Button("Generate Audio!")
|
| 114 |
+
language = gr.Dropdown(
|
| 115 |
+
default_model_per_language.keys(),
|
| 116 |
+
value = "marathi",
|
| 117 |
+
label = "language",
|
| 118 |
+
info = "Language that you want to test"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
model_id = gr.Dropdown(
|
| 122 |
+
models_per_language["marathi"],
|
| 123 |
+
value="ylacombe/mms-mar-finetuned-monospeaker",
|
| 124 |
+
label="Model",
|
| 125 |
+
info="Model you want to test",
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
with gr.Column():
|
| 129 |
+
outputs = []
|
| 130 |
+
for i in range(max_speakers):
|
| 131 |
+
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
|
| 132 |
+
outputs.append(out_audio)
|
| 133 |
+
|
| 134 |
+
with gr.Accordion("Datasets and models details", open=False):
|
| 135 |
+
gr.Markdown("""
|
| 136 |
+
|
| 137 |
+
For each language, we used 100 to 150 samples of a single speaker to finetune the model.
|
| 138 |
+
### Spanish
|
| 139 |
+
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
|
| 140 |
+
* **Datasets**:
|
| 141 |
+
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
|
| 142 |
+
### Tamil
|
| 143 |
+
* **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
|
| 144 |
+
* **Datasets**:
|
| 145 |
+
- [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
|
| 146 |
+
### Gujarati
|
| 147 |
+
* **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
|
| 148 |
+
* **Datasets**:
|
| 149 |
+
- [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
|
| 150 |
+
### Marathi
|
| 151 |
+
* **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
|
| 152 |
+
* **Datasets**:
|
| 153 |
+
- [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
|
| 154 |
+
### English
|
| 155 |
+
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
|
| 156 |
+
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
|
| 157 |
+
|
| 158 |
+
""")
|
| 159 |
+
|
| 160 |
+
with gr.Accordion("Run VITS and MMS with transformers", open=False):
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
"""
|
| 163 |
+
```bash
|
| 164 |
+
pip install transformers
|
| 165 |
+
```
|
| 166 |
+
```py
|
| 167 |
+
from transformers import pipeline
|
| 168 |
+
import scipy
|
| 169 |
+
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
|
| 170 |
+
|
| 171 |
+
results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
|
| 172 |
+
# write to a wav file
|
| 173 |
+
scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
|
| 174 |
+
```
|
| 175 |
+
"""
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
language.change(lambda language: gr.Dropdown(
|
| 180 |
+
models_per_language[language],
|
| 181 |
+
value=models_per_language[language][0],
|
| 182 |
+
label="Model",
|
| 183 |
+
info="Model you want to test",
|
| 184 |
+
),
|
| 185 |
+
language,
|
| 186 |
+
model_id
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
btn.click(generate_audio, [inp_text, model_id, language], outputs)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
demo_blocks.queue().launch()
|