Spaces:
Running
Running
Commit
·
3cbd872
1
Parent(s):
c083e90
Fixed chart rendering
Browse files
app.py
CHANGED
@@ -65,36 +65,64 @@ print("Model files ready.")
|
|
65 |
# Global model cache
|
66 |
models = {}
|
67 |
|
68 |
-
def
|
69 |
-
"""Create a
|
70 |
-
#
|
71 |
-
|
72 |
-
|
73 |
-
if a > 0.5: return "Joyful/Excited"
|
74 |
-
elif a < -0.5: return "Content/Peaceful"
|
75 |
-
else: return "Happy/Pleasant"
|
76 |
-
elif v < -0.5:
|
77 |
-
if a > 0.5: return "Angry/Tense"
|
78 |
-
elif a < -0.5: return "Sad/Depressed"
|
79 |
-
else: return "Unhappy/Unpleasant"
|
80 |
-
else:
|
81 |
-
if a > 0.5: return "Alert/Energetic"
|
82 |
-
elif a < -0.5: return "Tired/Calm"
|
83 |
-
else: return "Neutral"
|
84 |
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
89 |
|
90 |
-
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def get_model(conditioning_type):
|
100 |
"""Get or initialize model with specified conditioning"""
|
@@ -149,22 +177,23 @@ def convert_midi_to_wav(midi_path):
|
|
149 |
print(f"Error converting MIDI to WAV: {str(e)}")
|
150 |
return None
|
151 |
|
152 |
-
@spaces.GPU(duration=120)
|
153 |
def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_instruments):
|
154 |
"""Generate music from input image"""
|
155 |
model = get_model(conditioning_type)
|
156 |
if model is None:
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
162 |
|
163 |
try:
|
164 |
-
# Create output directory
|
165 |
output_dir = os.path.join(os.path.dirname(__file__), "output")
|
166 |
os.makedirs(output_dir, exist_ok=True)
|
167 |
-
|
168 |
# Generate music
|
169 |
valence, arousal, midi_path = model.generate(
|
170 |
image_path=image,
|
@@ -176,42 +205,54 @@ def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_in
|
|
176 |
min_instruments=int(min_instruments)
|
177 |
)
|
178 |
|
179 |
-
#
|
180 |
-
if not os.path.isabs(midi_path):
|
181 |
-
midi_path = os.path.join(output_dir, midi_path)
|
182 |
-
|
183 |
-
# Convert MIDI to WAV for playback
|
184 |
wav_path = convert_midi_to_wav(midi_path)
|
185 |
if wav_path is None:
|
186 |
-
return
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
|
192 |
-
# Create emotion
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
209 |
except Exception as e:
|
210 |
-
return
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
# Create Gradio interface
|
217 |
with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
@@ -312,11 +353,14 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
312 |
)
|
313 |
|
314 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
315 |
midi_output = gr.Audio(
|
316 |
type="filepath",
|
317 |
label="Generated Music"
|
318 |
)
|
319 |
-
emotion_display = gr.Markdown()
|
320 |
results = gr.Markdown()
|
321 |
|
322 |
gr.Markdown("""
|
@@ -350,7 +394,7 @@ with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
350 |
generate_btn.click(
|
351 |
fn=generate_music_wrapper,
|
352 |
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
353 |
-
outputs=[
|
354 |
)
|
355 |
|
356 |
# Launch app
|
|
|
65 |
# Global model cache
|
66 |
models = {}
|
67 |
|
68 |
+
def create_emotion_plot(valence, arousal):
|
69 |
+
"""Create a valence-arousal plot with the predicted emotion point"""
|
70 |
+
# Create figure in a process-safe way
|
71 |
+
fig = plt.figure(figsize=(8, 8), dpi=100)
|
72 |
+
ax = fig.add_subplot(111)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Set background color and style
|
75 |
+
plt.style.use('default') # Use default style instead of seaborn
|
76 |
+
fig.patch.set_facecolor('#ffffff')
|
77 |
+
ax.set_facecolor('#ffffff')
|
78 |
|
79 |
+
# Create the coordinate system with a light grid
|
80 |
+
ax.grid(True, linestyle='--', alpha=0.2)
|
81 |
+
ax.axhline(y=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
|
82 |
+
ax.axvline(x=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
|
83 |
|
84 |
+
# Plot region
|
85 |
+
circle = plt.Circle((0, 0), 1, fill=False, color='#666666', alpha=0.3, linewidth=1.5)
|
86 |
+
ax.add_artist(circle)
|
87 |
|
88 |
+
# Add labels with nice fonts
|
89 |
+
font = {'family': 'sans-serif', 'weight': 'medium', 'size': 12}
|
90 |
+
label_dist = 1.35 # Increased distance for labels
|
91 |
+
ax.text(label_dist, 0, 'Positive', ha='left', va='center', **font)
|
92 |
+
ax.text(-label_dist, 0, 'Negative', ha='right', va='center', **font)
|
93 |
+
ax.text(0, label_dist, 'Excited', ha='center', va='bottom', **font)
|
94 |
+
ax.text(0, -label_dist, 'Calm', ha='center', va='top', **font)
|
95 |
|
96 |
+
# Plot the point with a nice style
|
97 |
+
ax.scatter([valence], [arousal], c='#4f46e5', s=150, zorder=5, alpha=0.8)
|
98 |
+
|
99 |
+
# Set limits and labels with more padding
|
100 |
+
ax.set_xlim(-1.6, 1.6)
|
101 |
+
ax.set_ylim(-1.6, 1.6)
|
102 |
+
|
103 |
+
# Format ticks
|
104 |
+
ax.set_xticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
|
105 |
+
ax.set_yticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
|
106 |
+
ax.tick_params(axis='both', which='major', labelsize=10)
|
107 |
+
|
108 |
+
# Add axis labels with padding
|
109 |
+
ax.set_xlabel('Valence', **font, labelpad=15)
|
110 |
+
ax.set_ylabel('Arousal', **font, labelpad=15)
|
111 |
+
|
112 |
+
# Remove spines
|
113 |
+
for spine in ax.spines.values():
|
114 |
+
spine.set_visible(False)
|
115 |
+
|
116 |
+
# Adjust layout with more padding
|
117 |
+
plt.tight_layout(pad=1.5)
|
118 |
+
|
119 |
+
# Save to a temporary file and return the path
|
120 |
+
temp_path = os.path.join(os.path.dirname(__file__), "output", "emotion_plot.png")
|
121 |
+
os.makedirs(os.path.dirname(temp_path), exist_ok=True)
|
122 |
+
plt.savefig(temp_path, bbox_inches='tight', dpi=100)
|
123 |
+
plt.close(fig) # Close the figure to free memory
|
124 |
+
|
125 |
+
return temp_path
|
126 |
|
127 |
def get_model(conditioning_type):
|
128 |
"""Get or initialize model with specified conditioning"""
|
|
|
177 |
print(f"Error converting MIDI to WAV: {str(e)}")
|
178 |
return None
|
179 |
|
180 |
+
@spaces.GPU(duration=120)
|
181 |
def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_instruments):
|
182 |
"""Generate music from input image"""
|
183 |
model = get_model(conditioning_type)
|
184 |
if model is None:
|
185 |
+
# IMPORTANT: Return a 3-element tuple, not a dictionary
|
186 |
+
return (
|
187 |
+
None, # For emotion_chart
|
188 |
+
None, # For midi_output
|
189 |
+
f"⚠️ Error: Failed to initialize {conditioning_type} model. Please check the logs."
|
190 |
+
)
|
191 |
|
192 |
try:
|
193 |
+
# Create output directory
|
194 |
output_dir = os.path.join(os.path.dirname(__file__), "output")
|
195 |
os.makedirs(output_dir, exist_ok=True)
|
196 |
+
|
197 |
# Generate music
|
198 |
valence, arousal, midi_path = model.generate(
|
199 |
image_path=image,
|
|
|
205 |
min_instruments=int(min_instruments)
|
206 |
)
|
207 |
|
208 |
+
# Convert MIDI to WAV
|
|
|
|
|
|
|
|
|
209 |
wav_path = convert_midi_to_wav(midi_path)
|
210 |
if wav_path is None:
|
211 |
+
return (
|
212 |
+
None,
|
213 |
+
None,
|
214 |
+
"⚠️ Error: Failed to convert MIDI to WAV for playback"
|
215 |
+
)
|
216 |
|
217 |
+
# Create emotion plot
|
218 |
+
plot_path = create_emotion_plot(valence, arousal)
|
219 |
|
220 |
+
# Build a nice Markdown result string
|
221 |
+
result_text = f"""
|
222 |
+
**Model Type:** {conditioning_type}
|
223 |
+
|
224 |
+
**Predicted Emotions:**
|
225 |
+
- Valence: {valence:.3f} (negative → positive)
|
226 |
+
- Arousal: {arousal:.3f} (calm → excited)
|
227 |
+
|
228 |
+
**Generation Parameters:**
|
229 |
+
- Temperature: {temperature}
|
230 |
+
- Top-p: {top_p}
|
231 |
+
- Min Instruments: {min_instruments}
|
232 |
+
|
233 |
+
Your music has been generated! Click the play button above to listen.
|
234 |
+
"""
|
235 |
+
|
236 |
+
# RETURN AS A TUPLE
|
237 |
+
return (plot_path, wav_path, result_text)
|
238 |
+
|
239 |
except Exception as e:
|
240 |
+
return (
|
241 |
+
None,
|
242 |
+
None,
|
243 |
+
f"⚠️ Error generating music: {str(e)}"
|
244 |
+
)
|
245 |
+
|
246 |
+
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
247 |
+
"""Wrapper for generate_music that handles separate temperatures"""
|
248 |
+
return generate_music(
|
249 |
+
image=image,
|
250 |
+
conditioning_type=conditioning_type,
|
251 |
+
gen_len=gen_len,
|
252 |
+
temperature=[float(note_temp), float(rest_temp)],
|
253 |
+
top_p=top_p,
|
254 |
+
min_instruments=min_instruments
|
255 |
+
)
|
256 |
|
257 |
# Create Gradio interface
|
258 |
with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
|
|
353 |
)
|
354 |
|
355 |
with gr.Column(scale=2):
|
356 |
+
emotion_chart = gr.Image(
|
357 |
+
label="Predicted Emotions",
|
358 |
+
type="filepath"
|
359 |
+
)
|
360 |
midi_output = gr.Audio(
|
361 |
type="filepath",
|
362 |
label="Generated Music"
|
363 |
)
|
|
|
364 |
results = gr.Markdown()
|
365 |
|
366 |
gr.Markdown("""
|
|
|
394 |
generate_btn.click(
|
395 |
fn=generate_music_wrapper,
|
396 |
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
397 |
+
outputs=[emotion_chart, midi_output, results]
|
398 |
)
|
399 |
|
400 |
# Launch app
|