Spaces:
Running
Running
Commit
·
69defc9
1
Parent(s):
e15e4d5
Initial commit
Browse files- .gitignore +41 -0
- README.md +3 -3
- app.py +376 -0
- aria/aria.py +121 -0
- aria/generate.py +61 -0
- aria/image_encoder.py +91 -0
- examples/happy.jpg +0 -0
- examples/sad.jpeg +0 -0
- midi_emotion/.gitignore +6 -0
- midi_emotion/LICENSE.md +653 -0
- midi_emotion/readme.md +66 -0
- midi_emotion/requirements.txt +8 -0
- midi_emotion/setup.py +13 -0
- midi_emotion/src/config.py +156 -0
- midi_emotion/src/create_dataset/hdf5_getters.py +476 -0
- midi_emotion/src/create_dataset/run.py +476 -0
- midi_emotion/src/create_dataset/utils.py +216 -0
- midi_emotion/src/data/collate.py +82 -0
- midi_emotion/src/data/data_processing.py +247 -0
- midi_emotion/src/data/data_processing_reverse.py +81 -0
- midi_emotion/src/data/loader.py +206 -0
- midi_emotion/src/data/loader_exhaustive.py +173 -0
- midi_emotion/src/data/loader_generations.py +107 -0
- midi_emotion/src/data/preprocess_features.py +107 -0
- midi_emotion/src/data/preprocess_pianorolls.py +82 -0
- midi_emotion/src/generate.py +403 -0
- midi_emotion/src/models/build_model.py +48 -0
- midi_emotion/src/models/music_continuous_token.py +275 -0
- midi_emotion/src/models/music_multi.py +269 -0
- midi_emotion/src/models/music_regression.py +250 -0
- midi_emotion/src/models/transfer_model.py +49 -0
- midi_emotion/src/models/transformer.py +56 -0
- midi_emotion/src/train.py +477 -0
- midi_emotion/src/utils.py +148 -0
- packages.txt +2 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
env/
|
26 |
+
ENV/
|
27 |
+
|
28 |
+
# IDE
|
29 |
+
.idea/
|
30 |
+
.vscode/
|
31 |
+
*.swp
|
32 |
+
*.swo
|
33 |
+
|
34 |
+
# Generated files
|
35 |
+
output/
|
36 |
+
model_cache/
|
37 |
+
*.wav
|
38 |
+
*.mid
|
39 |
+
|
40 |
+
# Example files are tracked normally (no LFS needed)
|
41 |
+
!examples/
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.13.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: Aria
|
3 |
+
emoji: 📉
|
4 |
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.13.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from PIL import Image
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
import pretty_midi
|
10 |
+
import librosa
|
11 |
+
import soundfile as sf
|
12 |
+
from midi2audio import FluidSynth
|
13 |
+
|
14 |
+
from aria.image_encoder import ImageEncoder
|
15 |
+
from aria.aria import ARIA
|
16 |
+
|
17 |
+
print("Checking model files...")
|
18 |
+
# Pre-download all model files at startup
|
19 |
+
MODEL_FILES = {
|
20 |
+
"image_encoder": "image_encoder.pt",
|
21 |
+
"continuous_concat": ["continuous_concat/model.pt", "continuous_concat/mappings.pt", "continuous_concat/model_config.pt"],
|
22 |
+
"continuous_token": ["continuous_token/model.pt", "continuous_token/mappings.pt", "continuous_token/model_config.pt"],
|
23 |
+
"discrete_token": ["discrete_token/model.pt", "discrete_token/mappings.pt", "discrete_token/model_config.pt"]
|
24 |
+
}
|
25 |
+
|
26 |
+
# Create cache directory
|
27 |
+
CACHE_DIR = os.path.join(os.path.dirname(__file__), "model_cache")
|
28 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Download and cache all files
|
31 |
+
cached_files = {}
|
32 |
+
for model_type, files in MODEL_FILES.items():
|
33 |
+
if isinstance(files, str):
|
34 |
+
files = [files]
|
35 |
+
|
36 |
+
cached_files[model_type] = []
|
37 |
+
for file in files:
|
38 |
+
try:
|
39 |
+
# Check if file already exists in cache
|
40 |
+
repo_id = "vincentamato/aria"
|
41 |
+
cached_path = os.path.join(CACHE_DIR, repo_id, file)
|
42 |
+
if os.path.exists(cached_path):
|
43 |
+
print(f"Using cached file: {file}")
|
44 |
+
cached_files[model_type].append(cached_path)
|
45 |
+
else:
|
46 |
+
print(f"Downloading file: {file}")
|
47 |
+
cached_path = hf_hub_download(
|
48 |
+
repo_id=repo_id,
|
49 |
+
filename=file,
|
50 |
+
cache_dir=CACHE_DIR
|
51 |
+
)
|
52 |
+
cached_files[model_type].append(cached_path)
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error with file {file}: {str(e)}")
|
55 |
+
|
56 |
+
print("Model files ready.")
|
57 |
+
|
58 |
+
# Global model cache
|
59 |
+
models = {}
|
60 |
+
|
61 |
+
def create_emotion_plot(valence, arousal):
|
62 |
+
"""Create a valence-arousal plot with the predicted emotion point"""
|
63 |
+
fig = plt.figure(figsize=(8, 8), dpi=100)
|
64 |
+
ax = fig.add_subplot(111)
|
65 |
+
|
66 |
+
# Set background color and style
|
67 |
+
plt.style.use('default') # Use default style instead of seaborn
|
68 |
+
fig.patch.set_facecolor('#ffffff')
|
69 |
+
ax.set_facecolor('#ffffff')
|
70 |
+
|
71 |
+
# Create the coordinate system with a light grid
|
72 |
+
ax.grid(True, linestyle='--', alpha=0.2)
|
73 |
+
ax.axhline(y=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
|
74 |
+
ax.axvline(x=0, color='#666666', linestyle='-', alpha=0.3, linewidth=1)
|
75 |
+
|
76 |
+
# Plot region
|
77 |
+
circle = plt.Circle((0, 0), 1, fill=False, color='#666666', alpha=0.3, linewidth=1.5)
|
78 |
+
ax.add_artist(circle)
|
79 |
+
|
80 |
+
# Add labels with nice fonts
|
81 |
+
font = {'family': 'sans-serif', 'weight': 'medium', 'size': 12}
|
82 |
+
label_dist = 1.35 # Increased distance for labels
|
83 |
+
ax.text(label_dist, 0, 'Positive', ha='left', va='center', **font)
|
84 |
+
ax.text(-label_dist, 0, 'Negative', ha='right', va='center', **font)
|
85 |
+
ax.text(0, label_dist, 'Excited', ha='center', va='bottom', **font)
|
86 |
+
ax.text(0, -label_dist, 'Calm', ha='center', va='top', **font)
|
87 |
+
|
88 |
+
# Plot the point with a nice style
|
89 |
+
ax.scatter([valence], [arousal], c='#4f46e5', s=150, zorder=5, alpha=0.8)
|
90 |
+
|
91 |
+
# Set limits and labels with more padding
|
92 |
+
ax.set_xlim(-1.6, 1.6)
|
93 |
+
ax.set_ylim(-1.6, 1.6)
|
94 |
+
|
95 |
+
# Format ticks
|
96 |
+
ax.set_xticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
|
97 |
+
ax.set_yticks([-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5])
|
98 |
+
ax.tick_params(axis='both', which='major', labelsize=10)
|
99 |
+
|
100 |
+
# Add axis labels with padding
|
101 |
+
ax.set_xlabel('Valence', **font, labelpad=15)
|
102 |
+
ax.set_ylabel('Arousal', **font, labelpad=15)
|
103 |
+
|
104 |
+
# Remove spines
|
105 |
+
for spine in ax.spines.values():
|
106 |
+
spine.set_visible(False)
|
107 |
+
|
108 |
+
# Adjust layout with more padding
|
109 |
+
plt.tight_layout(pad=1.5)
|
110 |
+
|
111 |
+
return fig
|
112 |
+
|
113 |
+
def get_model(conditioning_type):
|
114 |
+
"""Get or initialize model with specified conditioning"""
|
115 |
+
if conditioning_type not in models:
|
116 |
+
try:
|
117 |
+
# Use cached files
|
118 |
+
image_model_path = cached_files["image_encoder"][0]
|
119 |
+
midi_model_dir = os.path.dirname(cached_files[conditioning_type][0])
|
120 |
+
|
121 |
+
models[conditioning_type] = ARIA(
|
122 |
+
image_model_checkpoint=image_model_path,
|
123 |
+
midi_model_dir=midi_model_dir,
|
124 |
+
conditioning=conditioning_type
|
125 |
+
)
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error initializing {conditioning_type} model: {str(e)}")
|
128 |
+
return None
|
129 |
+
return models[conditioning_type]
|
130 |
+
|
131 |
+
def convert_midi_to_wav(midi_path):
|
132 |
+
"""Convert MIDI file to WAV using FluidSynth"""
|
133 |
+
wav_path = midi_path.replace('.mid', '.wav')
|
134 |
+
|
135 |
+
# If WAV file already exists and is newer than MIDI file, use cached version
|
136 |
+
if os.path.exists(wav_path) and os.path.getmtime(wav_path) > os.path.getmtime(midi_path):
|
137 |
+
return wav_path
|
138 |
+
|
139 |
+
try:
|
140 |
+
# Check common soundfont locations
|
141 |
+
soundfont_paths = [
|
142 |
+
'/usr/share/sounds/sf2/FluidR3_GM.sf2', # Linux
|
143 |
+
'/usr/share/soundfonts/default.sf2', # Linux alternative
|
144 |
+
'/usr/local/share/fluidsynth/generaluser.sf2', # macOS
|
145 |
+
'C:\\soundfonts\\generaluser.sf2' # Windows
|
146 |
+
]
|
147 |
+
|
148 |
+
soundfont = None
|
149 |
+
for sf_path in soundfont_paths:
|
150 |
+
if os.path.exists(sf_path):
|
151 |
+
soundfont = sf_path
|
152 |
+
break
|
153 |
+
|
154 |
+
if soundfont is None:
|
155 |
+
raise RuntimeError("No SoundFont file found. Please install fluid-soundfont-gm package.")
|
156 |
+
|
157 |
+
# Convert MIDI to WAV using FluidSynth with explicit soundfont
|
158 |
+
fs = FluidSynth(sound_font=soundfont)
|
159 |
+
fs.midi_to_audio(midi_path, wav_path)
|
160 |
+
|
161 |
+
return wav_path
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error converting MIDI to WAV: {str(e)}")
|
164 |
+
return None
|
165 |
+
|
166 |
+
def generate_music(image, conditioning_type, gen_len, temperature, top_p, min_instruments):
|
167 |
+
"""Generate music from input image"""
|
168 |
+
model = get_model(conditioning_type)
|
169 |
+
if model is None:
|
170 |
+
return {
|
171 |
+
emotion_chart: None,
|
172 |
+
midi_output: None,
|
173 |
+
results: f"⚠️ Error: Failed to initialize {conditioning_type} model. Please check the logs."
|
174 |
+
}
|
175 |
+
|
176 |
+
try:
|
177 |
+
# Create output directory with absolute path
|
178 |
+
output_dir = os.path.join(os.path.dirname(__file__), "output")
|
179 |
+
os.makedirs(output_dir, exist_ok=True)
|
180 |
+
|
181 |
+
# Generate music
|
182 |
+
valence, arousal, midi_path = model.generate(
|
183 |
+
image_path=image,
|
184 |
+
out_dir=output_dir,
|
185 |
+
gen_len=gen_len,
|
186 |
+
temperature=temperature,
|
187 |
+
top_k=-1,
|
188 |
+
top_p=float(top_p),
|
189 |
+
min_instruments=int(min_instruments)
|
190 |
+
)
|
191 |
+
|
192 |
+
# Ensure we have the absolute path to the MIDI file
|
193 |
+
if not os.path.isabs(midi_path):
|
194 |
+
midi_path = os.path.join(output_dir, midi_path)
|
195 |
+
|
196 |
+
# Convert MIDI to WAV for playback
|
197 |
+
wav_path = convert_midi_to_wav(midi_path)
|
198 |
+
if wav_path is None:
|
199 |
+
return {
|
200 |
+
emotion_chart: None,
|
201 |
+
midi_output: None,
|
202 |
+
results: "⚠️ Error: Failed to convert MIDI to WAV for playback"
|
203 |
+
}
|
204 |
+
|
205 |
+
# Create emotion plot
|
206 |
+
emotion_fig = create_emotion_plot(valence, arousal)
|
207 |
+
|
208 |
+
return {
|
209 |
+
emotion_chart: emotion_fig,
|
210 |
+
midi_output: wav_path,
|
211 |
+
results: f"""
|
212 |
+
**Model Type:** {conditioning_type}
|
213 |
+
|
214 |
+
**Predicted Emotions:**
|
215 |
+
- Valence: {valence:.3f} (negative → positive)
|
216 |
+
- Arousal: {arousal:.3f} (calm → excited)
|
217 |
+
|
218 |
+
**Generation Parameters:**
|
219 |
+
- Temperature: {temperature}
|
220 |
+
- Top-p: {top_p}
|
221 |
+
- Min Instruments: {min_instruments}
|
222 |
+
|
223 |
+
Your music has been generated! Click the play button above to listen.
|
224 |
+
"""
|
225 |
+
}
|
226 |
+
except Exception as e:
|
227 |
+
return {
|
228 |
+
emotion_chart: None,
|
229 |
+
midi_output: None,
|
230 |
+
results: f"⚠️ Error generating music: {str(e)}"
|
231 |
+
}
|
232 |
+
|
233 |
+
# Create Gradio interface
|
234 |
+
with gr.Blocks(title="ARIA - Art to Music Generator", theme=gr.themes.Soft(
|
235 |
+
primary_hue="indigo",
|
236 |
+
secondary_hue="slate",
|
237 |
+
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
|
238 |
+
)) as demo:
|
239 |
+
gr.Markdown("""
|
240 |
+
# 🎨 ARIA: Artistic Rendering of Images into Audio
|
241 |
+
|
242 |
+
Upload an image and ARIA will analyze its emotional content to generate matching music!
|
243 |
+
|
244 |
+
### How it works:
|
245 |
+
1. ARIA first analyzes the emotional content of your image along two dimensions:
|
246 |
+
- **Valence**: How positive or negative the emotion is (-1 to 1)
|
247 |
+
- **Arousal**: How calm or excited the emotion is (-1 to 1)
|
248 |
+
2. These emotions are then used to generate music that matches the mood
|
249 |
+
""")
|
250 |
+
|
251 |
+
with gr.Row():
|
252 |
+
with gr.Column(scale=3):
|
253 |
+
image_input = gr.Image(
|
254 |
+
type="filepath",
|
255 |
+
label="Upload Image"
|
256 |
+
)
|
257 |
+
|
258 |
+
with gr.Group():
|
259 |
+
gr.Markdown("### Generation Settings")
|
260 |
+
|
261 |
+
with gr.Row():
|
262 |
+
with gr.Column():
|
263 |
+
conditioning_type = gr.Radio(
|
264 |
+
choices=["continuous_concat", "continuous_token", "discrete_token"],
|
265 |
+
value="continuous_concat",
|
266 |
+
label="Conditioning Type",
|
267 |
+
info="How the emotional information is incorporated into the music generation"
|
268 |
+
)
|
269 |
+
with gr.Column():
|
270 |
+
gen_len = gr.Slider(
|
271 |
+
minimum=256,
|
272 |
+
maximum=4096,
|
273 |
+
value=1024,
|
274 |
+
step=256,
|
275 |
+
label="Generation Length",
|
276 |
+
info="Number of tokens to generate (longer = more music)"
|
277 |
+
)
|
278 |
+
|
279 |
+
with gr.Row():
|
280 |
+
with gr.Column():
|
281 |
+
note_temperature = gr.Slider(
|
282 |
+
minimum=0.1,
|
283 |
+
maximum=2.0,
|
284 |
+
value=1.2,
|
285 |
+
step=0.1,
|
286 |
+
label="Note Temperature",
|
287 |
+
info="Controls randomness of note generation"
|
288 |
+
)
|
289 |
+
with gr.Column():
|
290 |
+
rest_temperature = gr.Slider(
|
291 |
+
minimum=0.1,
|
292 |
+
maximum=2.0,
|
293 |
+
value=1.2,
|
294 |
+
step=0.1,
|
295 |
+
label="Rest Temperature",
|
296 |
+
info="Controls randomness of rest/timing generation"
|
297 |
+
)
|
298 |
+
|
299 |
+
with gr.Row():
|
300 |
+
with gr.Column():
|
301 |
+
top_p = gr.Slider(
|
302 |
+
minimum=0.1,
|
303 |
+
maximum=1.0,
|
304 |
+
value=0.6,
|
305 |
+
step=0.1,
|
306 |
+
label="Top-p Sampling",
|
307 |
+
info="Nucleus sampling threshold - lower = more focused"
|
308 |
+
)
|
309 |
+
with gr.Column():
|
310 |
+
min_instruments = gr.Slider(
|
311 |
+
minimum=1,
|
312 |
+
maximum=5,
|
313 |
+
value=2,
|
314 |
+
step=1,
|
315 |
+
label="Minimum Instruments",
|
316 |
+
info="Minimum number of instruments in the generated music"
|
317 |
+
)
|
318 |
+
|
319 |
+
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
|
320 |
+
|
321 |
+
# Add examples
|
322 |
+
gr.Examples(
|
323 |
+
examples=[
|
324 |
+
["examples/happy.jpg", "continuous_concat", 1024, 1.2, 1.2, 0.6, 2],
|
325 |
+
["examples/sad.jpeg", "continuous_token", 1024, 1.2, 1.2, 0.6, 2],
|
326 |
+
],
|
327 |
+
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
328 |
+
label="Try these examples"
|
329 |
+
)
|
330 |
+
|
331 |
+
with gr.Column(scale=2):
|
332 |
+
emotion_chart = gr.Plot(
|
333 |
+
label="Predicted Emotions"
|
334 |
+
)
|
335 |
+
midi_output = gr.Audio(
|
336 |
+
type="filepath",
|
337 |
+
label="Generated Music"
|
338 |
+
)
|
339 |
+
results = gr.Markdown()
|
340 |
+
|
341 |
+
gr.Markdown("""
|
342 |
+
### About ARIA
|
343 |
+
|
344 |
+
ARIA is a deep learning system that generates music from artwork by:
|
345 |
+
1. Using a image emotion model to extract emotional content from images
|
346 |
+
2. Generating matching music using an emotion-conditioned music generation model
|
347 |
+
|
348 |
+
The emotion-conditioned MIDI generation model is based on the work by Serkan Sulun et al. in their paper
|
349 |
+
["Symbolic music generation conditioned on continuous-valued emotions"](https://ieeexplore.ieee.org/document/9762257).
|
350 |
+
Original implementation: [github.com/serkansulun/midi-emotion](https://github.com/serkansulun/midi-emotion)
|
351 |
+
|
352 |
+
### Conditioning Types
|
353 |
+
- **continuous_concat**: Emotions are concatenated with music features (recommended)
|
354 |
+
- **continuous_token**: Emotions are added as special tokens
|
355 |
+
- **discrete_token**: Emotions are discretized into tokens
|
356 |
+
""")
|
357 |
+
|
358 |
+
def generate_music_wrapper(image, conditioning_type, gen_len, note_temp, rest_temp, top_p, min_instruments):
|
359 |
+
"""Wrapper for generate_music that handles separate temperatures"""
|
360 |
+
return generate_music(
|
361 |
+
image=image,
|
362 |
+
conditioning_type=conditioning_type,
|
363 |
+
gen_len=gen_len,
|
364 |
+
temperature=[float(note_temp), float(rest_temp)],
|
365 |
+
top_p=top_p,
|
366 |
+
min_instruments=min_instruments
|
367 |
+
)
|
368 |
+
|
369 |
+
generate_btn.click(
|
370 |
+
fn=generate_music_wrapper,
|
371 |
+
inputs=[image_input, conditioning_type, gen_len, note_temperature, rest_temperature, top_p, min_instruments],
|
372 |
+
outputs=[emotion_chart, midi_output, results]
|
373 |
+
)
|
374 |
+
|
375 |
+
# Launch app
|
376 |
+
demo.launch(share=True)
|
aria/aria.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import datetime
|
6 |
+
|
7 |
+
from .image_encoder import ImageEncoder
|
8 |
+
|
9 |
+
# Add MIDI emotion model path to Python path
|
10 |
+
import sys
|
11 |
+
MIDI_EMOTION_PATH = os.path.join(os.path.dirname(__file__), "..", "midi_emotion", "src")
|
12 |
+
sys.path.append(MIDI_EMOTION_PATH)
|
13 |
+
|
14 |
+
class ARIA:
|
15 |
+
"""ARIA model that generates music from images based on emotional content."""
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
image_model_checkpoint: str,
|
20 |
+
midi_model_dir: str,
|
21 |
+
conditioning: str = "continuous_concat",
|
22 |
+
device: str = None
|
23 |
+
):
|
24 |
+
"""Initialize ARIA model.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
image_model_checkpoint: Path to image emotion model checkpoint
|
28 |
+
midi_model_dir: Path to midi emotion model directory
|
29 |
+
conditioning: Type of conditioning to use (continuous_concat, continuous_token, discrete_token)
|
30 |
+
device: Device to run on (default: auto-detect)
|
31 |
+
"""
|
32 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() and not device == "cpu" else "cpu")
|
33 |
+
self.conditioning = conditioning
|
34 |
+
|
35 |
+
# Load image emotion model
|
36 |
+
self.image_model = ImageEncoder()
|
37 |
+
checkpoint = torch.load(image_model_checkpoint, map_location=self.device, weights_only=True)
|
38 |
+
self.image_model.load_state_dict(checkpoint["model_state_dict"])
|
39 |
+
self.image_model.eval()
|
40 |
+
|
41 |
+
# Import midi generation
|
42 |
+
from midi_emotion.src.generate import generate
|
43 |
+
from midi_emotion.src.models.build_model import build_model
|
44 |
+
self.generate_midi = generate
|
45 |
+
|
46 |
+
# Load midi model
|
47 |
+
model_fp = os.path.join(midi_model_dir, 'model.pt')
|
48 |
+
mappings_fp = os.path.join(midi_model_dir, 'mappings.pt')
|
49 |
+
config_fp = os.path.join(midi_model_dir, 'model_config.pt')
|
50 |
+
|
51 |
+
self.maps = torch.load(mappings_fp, weights_only=True)
|
52 |
+
config = torch.load(config_fp, weights_only=True)
|
53 |
+
self.midi_model, _ = build_model(None, load_config_dict=config)
|
54 |
+
self.midi_model = self.midi_model.to(self.device)
|
55 |
+
self.midi_model.load_state_dict(torch.load(model_fp, map_location=self.device, weights_only=True))
|
56 |
+
self.midi_model.eval()
|
57 |
+
|
58 |
+
def generate(
|
59 |
+
self,
|
60 |
+
image_path: str,
|
61 |
+
out_dir: str = "output",
|
62 |
+
gen_len: int = 2048,
|
63 |
+
temperature: list = [1.2, 1.2],
|
64 |
+
top_k: int = -1,
|
65 |
+
top_p: float = 0.7,
|
66 |
+
min_instruments: int = 2
|
67 |
+
) -> tuple[float, float, str]:
|
68 |
+
"""Generate music from an image.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
image_path: Path to input image
|
72 |
+
out_dir: Directory to save generated MIDI
|
73 |
+
gen_len: Length of generation in tokens
|
74 |
+
temperature: Temperature for sampling [note_temp, rest_temp]
|
75 |
+
top_k: Top-k sampling (-1 to disable)
|
76 |
+
top_p: Top-p sampling threshold
|
77 |
+
min_instruments: Minimum number of instruments required
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Tuple of (valence, arousal, midi_path)
|
81 |
+
"""
|
82 |
+
# Get emotion from image
|
83 |
+
image = Image.open(image_path).convert("RGB")
|
84 |
+
with torch.no_grad():
|
85 |
+
valence, arousal = self.image_model(image)
|
86 |
+
valence = valence.squeeze().cpu().item()
|
87 |
+
arousal = arousal.squeeze().cpu().item()
|
88 |
+
|
89 |
+
# Create output directory
|
90 |
+
os.makedirs(out_dir, exist_ok=True)
|
91 |
+
|
92 |
+
# Generate MIDI
|
93 |
+
continuous_conditions = np.array([[valence, arousal]], dtype=np.float32)
|
94 |
+
|
95 |
+
# Generate timestamp for filename (for reference)
|
96 |
+
now = datetime.datetime.now()
|
97 |
+
timestamp = now.strftime("%Y_%m_%d_%H_%M_%S")
|
98 |
+
|
99 |
+
# Generate the MIDI
|
100 |
+
self.generate_midi(
|
101 |
+
model=self.midi_model,
|
102 |
+
maps=self.maps,
|
103 |
+
device=self.device,
|
104 |
+
out_dir=out_dir,
|
105 |
+
conditioning=self.conditioning,
|
106 |
+
continuous_conditions=continuous_conditions,
|
107 |
+
gen_len=gen_len,
|
108 |
+
temperatures=temperature,
|
109 |
+
top_k=top_k,
|
110 |
+
top_p=top_p,
|
111 |
+
min_n_instruments=min_instruments
|
112 |
+
)
|
113 |
+
|
114 |
+
# Find the most recently generated MIDI file
|
115 |
+
midi_files = [f for f in os.listdir(out_dir) if f.endswith('.mid')]
|
116 |
+
if midi_files:
|
117 |
+
# Sort by creation time and get most recent
|
118 |
+
midi_path = os.path.join(out_dir, max(midi_files, key=lambda f: os.path.getctime(os.path.join(out_dir, f))))
|
119 |
+
return valence, arousal, midi_path
|
120 |
+
|
121 |
+
raise RuntimeError("Failed to generate MIDI file")
|
aria/generate.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from src.models.aria.aria import ARIA
|
3 |
+
|
4 |
+
def main():
|
5 |
+
parser = argparse.ArgumentParser(description="Generate music from images based on emotional content")
|
6 |
+
|
7 |
+
parser.add_argument("--image", type=str, required=True,
|
8 |
+
help="Path to input image")
|
9 |
+
parser.add_argument("--image_model_checkpoint", type=str, required=True,
|
10 |
+
help="Path to image emotion model checkpoint")
|
11 |
+
parser.add_argument("--midi_model_dir", type=str, required=True,
|
12 |
+
help="Path to midi emotion model directory")
|
13 |
+
parser.add_argument("--out_dir", type=str, default="output",
|
14 |
+
help="Directory to save generated MIDI")
|
15 |
+
parser.add_argument("--gen_len", type=int, default=512,
|
16 |
+
help="Length of generation in tokens")
|
17 |
+
parser.add_argument("--temperature", type=float, nargs=2, default=[1.2, 1.2],
|
18 |
+
help="Temperature for sampling [note_temp, rest_temp]")
|
19 |
+
parser.add_argument("--top_k", type=int, default=-1,
|
20 |
+
help="Top-k sampling (-1 to disable)")
|
21 |
+
parser.add_argument("--top_p", type=float, default=0.7,
|
22 |
+
help="Top-p sampling threshold")
|
23 |
+
parser.add_argument("--min_instruments", type=int, default=1,
|
24 |
+
help="Minimum number of instruments required")
|
25 |
+
parser.add_argument("--cpu", action="store_true",
|
26 |
+
help="Force CPU inference")
|
27 |
+
parser.add_argument("--conditioning", type=str, required=True,
|
28 |
+
choices=["none", "discrete_token", "continuous_token", "continuous_concat"],
|
29 |
+
help="Type of conditioning to use")
|
30 |
+
parser.add_argument("--batch_size", type=int, default=1,
|
31 |
+
help="Number of samples to generate (not used for image input)")
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
|
35 |
+
# Initialize model
|
36 |
+
model = ARIA(
|
37 |
+
image_model_checkpoint=args.image_model_checkpoint,
|
38 |
+
midi_model_dir=args.midi_model_dir,
|
39 |
+
conditioning=args.conditioning,
|
40 |
+
device="cpu" if args.cpu else None
|
41 |
+
)
|
42 |
+
|
43 |
+
# Generate music
|
44 |
+
valence, arousal, midi_path = model.generate(
|
45 |
+
image_path=args.image,
|
46 |
+
out_dir=args.out_dir,
|
47 |
+
gen_len=args.gen_len,
|
48 |
+
temperature=args.temperature,
|
49 |
+
top_k=args.top_k,
|
50 |
+
top_p=args.top_p,
|
51 |
+
min_instruments=args.min_instruments
|
52 |
+
)
|
53 |
+
|
54 |
+
# Print results
|
55 |
+
print(f"\nPredicted emotions:")
|
56 |
+
print(f"Valence: {valence:.3f} (negative -> positive)")
|
57 |
+
print(f"Arousal: {arousal:.3f} (calm -> excited)")
|
58 |
+
print(f"\nGenerated MIDI saved to: {midi_path}")
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
main()
|
aria/image_encoder.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
from PIL import Image
|
5 |
+
from typing import Tuple, Union
|
6 |
+
|
7 |
+
class ImageEncoder(nn.Module):
|
8 |
+
def __init__(self, clip_model_name: str = "openai/clip-vit-large-patch14-336"):
|
9 |
+
"""Initialize the image encoder using CLIP.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
clip_model_name: HuggingFace model name for CLIP
|
13 |
+
"""
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# Load CLIP model and processor
|
17 |
+
self.clip_model = CLIPModel.from_pretrained(clip_model_name)
|
18 |
+
self.processor = CLIPProcessor.from_pretrained(clip_model_name)
|
19 |
+
|
20 |
+
# Freeze CLIP parameters
|
21 |
+
for param in self.clip_model.parameters():
|
22 |
+
param.requires_grad = False
|
23 |
+
|
24 |
+
# Add projection layers for valence and arousal
|
25 |
+
hidden_dim = self.clip_model.config.projection_dim
|
26 |
+
projection_dim = hidden_dim // 2
|
27 |
+
|
28 |
+
self.valence_head = nn.Sequential(
|
29 |
+
nn.Linear(hidden_dim, projection_dim),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Dropout(0.1),
|
32 |
+
nn.Linear(projection_dim, projection_dim // 2),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Dropout(0.1),
|
35 |
+
nn.Linear(projection_dim // 2, 1),
|
36 |
+
nn.Tanh() # Output between -1 and 1
|
37 |
+
)
|
38 |
+
|
39 |
+
self.arousal_head = nn.Sequential(
|
40 |
+
nn.Linear(hidden_dim, projection_dim),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.Dropout(0.1),
|
43 |
+
nn.Linear(projection_dim, projection_dim // 2),
|
44 |
+
nn.ReLU(),
|
45 |
+
nn.Dropout(0.1),
|
46 |
+
nn.Linear(projection_dim // 2, 1),
|
47 |
+
nn.Tanh() # Output between -1 and 1
|
48 |
+
)
|
49 |
+
|
50 |
+
# Move model to GPU if available
|
51 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
self.to(self.device)
|
53 |
+
|
54 |
+
def forward(self, images: Union[Image.Image, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
55 |
+
"""Forward pass to get valence and arousal predictions.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
images: Either PIL images or tensors in CLIP format
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Tuple of predicted valence and arousal scores
|
62 |
+
"""
|
63 |
+
# Process images if they're PIL images
|
64 |
+
if isinstance(images, Image.Image):
|
65 |
+
inputs = self.processor(images=images, return_tensors="pt")
|
66 |
+
pixel_values = inputs.pixel_values.to(self.device)
|
67 |
+
else:
|
68 |
+
pixel_values = images.to(self.device)
|
69 |
+
|
70 |
+
# Get CLIP image features
|
71 |
+
image_features = self.clip_model.get_image_features(pixel_values)
|
72 |
+
|
73 |
+
# Project to valence and arousal scores
|
74 |
+
valence = self.valence_head(image_features)
|
75 |
+
arousal = self.arousal_head(image_features)
|
76 |
+
|
77 |
+
return valence, arousal
|
78 |
+
|
79 |
+
def encode_image(self, image: Image.Image) -> torch.Tensor:
|
80 |
+
"""Get the raw CLIP image embeddings.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image: PIL image to encode
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
Image embedding tensor
|
87 |
+
"""
|
88 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
89 |
+
with torch.no_grad():
|
90 |
+
image_features = self.clip_model.get_image_features(inputs.pixel_values.to(self.device))
|
91 |
+
return image_features
|
examples/happy.jpg
ADDED
![]() |
examples/sad.jpeg
ADDED
![]() |
midi_emotion/.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
.vscode
|
3 |
+
data_files/*
|
4 |
+
output/*
|
5 |
+
!.gitkeep
|
6 |
+
.cache
|
midi_emotion/LICENSE.md
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright © 2022 INESC TEC
|
2 |
+
|
3 |
+
Emotion-based MIDI generator: Uses deep neural networks to create symbolic music (MIDI) based on user-defined emotions from the valence-arousal plane.
|
4 |
+
|
5 |
+
This software is authored by:
|
6 |
+
Serkan Sulun
|
7 |
+
|
8 |
+
|
9 |
+
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
|
10 |
+
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
11 |
+
You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
|
12 |
+
A commercial license is also available for use in industrial projects and collaborations that do not wish to use the GPL v3 license.
|
13 |
+
To obtain the commercial license please contact the INESC TEC Tech-nology Licensing Office (TLO) at [email protected], or
|
14 |
+
Campus da Faculdade de Engenharia da Universidade do Porto
|
15 |
+
Rua Dr. Roberto Frias
|
16 |
+
4200-465 Porto
|
17 |
+
Portugal
|
18 |
+
|
19 |
+
If needed SAL (INESC TEC Technology Licensing Office - TLO) can assist with all the legal details regarding the licensing agreement
|
20 |
+
|
21 |
+
If you use Emotion-based MIDI generator in a work that leads to a scientific publication, we would appreciate it if you would kindly cite Emotion-based MIDI generator in your manuscript.
|
22 |
+
|
23 |
+
S. Sulun, M. E. P. Davies and P. Viana, "Symbolic Music Generation Conditioned on Continuous-Valued Emotions," in IEEE Access, vol. 10, pp. 44617-44626, 2022, doi: 10.1109/ACCESS.2022.3169744.
|
24 |
+
|
25 |
+
The paper can be found at https://ieeexplore.ieee.org/document/9762257
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
GNU GENERAL PUBLIC LICENSE
|
35 |
+
Version 3, 29 June 2007
|
36 |
+
|
37 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
38 |
+
Everyone is permitted to copy and distribute verbatim copies
|
39 |
+
of this license document, but changing it is not allowed.
|
40 |
+
|
41 |
+
Preamble
|
42 |
+
|
43 |
+
The GNU General Public License is a free, copyleft license for
|
44 |
+
software and other kinds of works.
|
45 |
+
|
46 |
+
The licenses for most software and other practical works are designed
|
47 |
+
to take away your freedom to share and change the works. By contrast,
|
48 |
+
the GNU General Public License is intended to guarantee your freedom to
|
49 |
+
share and change all versions of a program--to make sure it remains free
|
50 |
+
software for all its users. We, the Free Software Foundation, use the
|
51 |
+
GNU General Public License for most of our software; it applies also to
|
52 |
+
any other work released this way by its authors. You can apply it to
|
53 |
+
your programs, too.
|
54 |
+
|
55 |
+
When we speak of free software, we are referring to freedom, not
|
56 |
+
price. Our General Public Licenses are designed to make sure that you
|
57 |
+
have the freedom to distribute copies of free software (and charge for
|
58 |
+
them if you wish), that you receive source code or can get it if you
|
59 |
+
want it, that you can change the software or use pieces of it in new
|
60 |
+
free programs, and that you know you can do these things.
|
61 |
+
|
62 |
+
To protect your rights, we need to prevent others from denying you
|
63 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
64 |
+
certain responsibilities if you distribute copies of the software, or if
|
65 |
+
you modify it: responsibilities to respect the freedom of others.
|
66 |
+
|
67 |
+
For example, if you distribute copies of such a program, whether
|
68 |
+
gratis or for a fee, you must pass on to the recipients the same
|
69 |
+
freedoms that you received. You must make sure that they, too, receive
|
70 |
+
or can get the source code. And you must show them these terms so they
|
71 |
+
know their rights.
|
72 |
+
|
73 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
74 |
+
(1) assert copyright on the software, and (2) offer you this License
|
75 |
+
giving you legal permission to copy, distribute and/or modify it.
|
76 |
+
|
77 |
+
For the developers' and authors' protection, the GPL clearly explains
|
78 |
+
that there is no warranty for this free software. For both users' and
|
79 |
+
authors' sake, the GPL requires that modified versions be marked as
|
80 |
+
changed, so that their problems will not be attributed erroneously to
|
81 |
+
authors of previous versions.
|
82 |
+
|
83 |
+
Some devices are designed to deny users access to install or run
|
84 |
+
modified versions of the software inside them, although the manufacturer
|
85 |
+
can do so. This is fundamentally incompatible with the aim of
|
86 |
+
protecting users' freedom to change the software. The systematic
|
87 |
+
pattern of such abuse occurs in the area of products for individuals to
|
88 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
89 |
+
have designed this version of the GPL to prohibit the practice for those
|
90 |
+
products. If such problems arise substantially in other domains, we
|
91 |
+
stand ready to extend this provision to those domains in future versions
|
92 |
+
of the GPL, as needed to protect the freedom of users.
|
93 |
+
|
94 |
+
Finally, every program is threatened constantly by software patents.
|
95 |
+
States should not allow patents to restrict development and use of
|
96 |
+
software on general-purpose computers, but in those that do, we wish to
|
97 |
+
avoid the special danger that patents applied to a free program could
|
98 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
99 |
+
patents cannot be used to render the program non-free.
|
100 |
+
|
101 |
+
The precise terms and conditions for copying, distribution and
|
102 |
+
modification follow.
|
103 |
+
|
104 |
+
TERMS AND CONDITIONS
|
105 |
+
|
106 |
+
0. Definitions.
|
107 |
+
|
108 |
+
"This License" refers to version 3 of the GNU General Public License.
|
109 |
+
|
110 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
111 |
+
works, such as semiconductor masks.
|
112 |
+
|
113 |
+
"The Program" refers to any copyrightable work licensed under this
|
114 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
115 |
+
"recipients" may be individuals or organizations.
|
116 |
+
|
117 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
118 |
+
in a fashion requiring copyright permission, other than the making of an
|
119 |
+
exact copy. The resulting work is called a "modified version" of the
|
120 |
+
earlier work or a work "based on" the earlier work.
|
121 |
+
|
122 |
+
A "covered work" means either the unmodified Program or a work based
|
123 |
+
on the Program.
|
124 |
+
|
125 |
+
To "propagate" a work means to do anything with it that, without
|
126 |
+
permission, would make you directly or secondarily liable for
|
127 |
+
infringement under applicable copyright law, except executing it on a
|
128 |
+
computer or modifying a private copy. Propagation includes copying,
|
129 |
+
distribution (with or without modification), making available to the
|
130 |
+
public, and in some countries other activities as well.
|
131 |
+
|
132 |
+
To "convey" a work means any kind of propagation that enables other
|
133 |
+
parties to make or receive copies. Mere interaction with a user through
|
134 |
+
a computer network, with no transfer of a copy, is not conveying.
|
135 |
+
|
136 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
137 |
+
to the extent that it includes a convenient and prominently visible
|
138 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
139 |
+
tells the user that there is no warranty for the work (except to the
|
140 |
+
extent that warranties are provided), that licensees may convey the
|
141 |
+
work under this License, and how to view a copy of this License. If
|
142 |
+
the interface presents a list of user commands or options, such as a
|
143 |
+
menu, a prominent item in the list meets this criterion.
|
144 |
+
|
145 |
+
1. Source Code.
|
146 |
+
|
147 |
+
The "source code" for a work means the preferred form of the work
|
148 |
+
for making modifications to it. "Object code" means any non-source
|
149 |
+
form of a work.
|
150 |
+
|
151 |
+
A "Standard Interface" means an interface that either is an official
|
152 |
+
standard defined by a recognized standards body, or, in the case of
|
153 |
+
interfaces specified for a particular programming language, one that
|
154 |
+
is widely used among developers working in that language.
|
155 |
+
|
156 |
+
The "System Libraries" of an executable work include anything, other
|
157 |
+
than the work as a whole, that (a) is included in the normal form of
|
158 |
+
packaging a Major Component, but which is not part of that Major
|
159 |
+
Component, and (b) serves only to enable use of the work with that
|
160 |
+
Major Component, or to implement a Standard Interface for which an
|
161 |
+
implementation is available to the public in source code form. A
|
162 |
+
"Major Component", in this context, means a major essential component
|
163 |
+
(kernel, window system, and so on) of the specific operating system
|
164 |
+
(if any) on which the executable work runs, or a compiler used to
|
165 |
+
produce the work, or an object code interpreter used to run it.
|
166 |
+
|
167 |
+
The "Corresponding Source" for a work in object code form means all
|
168 |
+
the source code needed to generate, install, and (for an executable
|
169 |
+
work) run the object code and to modify the work, including scripts to
|
170 |
+
control those activities. However, it does not include the work's
|
171 |
+
System Libraries, or general-purpose tools or generally available free
|
172 |
+
programs which are used unmodified in performing those activities but
|
173 |
+
which are not part of the work. For example, Corresponding Source
|
174 |
+
includes interface definition files associated with source files for
|
175 |
+
the work, and the source code for shared libraries and dynamically
|
176 |
+
linked subprograms that the work is specifically designed to require,
|
177 |
+
such as by intimate data communication or control flow between those
|
178 |
+
subprograms and other parts of the work.
|
179 |
+
|
180 |
+
The Corresponding Source need not include anything that users
|
181 |
+
can regenerate automatically from other parts of the Corresponding
|
182 |
+
Source.
|
183 |
+
|
184 |
+
The Corresponding Source for a work in source code form is that
|
185 |
+
same work.
|
186 |
+
|
187 |
+
2. Basic Permissions.
|
188 |
+
|
189 |
+
All rights granted under this License are granted for the term of
|
190 |
+
copyright on the Program, and are irrevocable provided the stated
|
191 |
+
conditions are met. This License explicitly affirms your unlimited
|
192 |
+
permission to run the unmodified Program. The output from running a
|
193 |
+
covered work is covered by this License only if the output, given its
|
194 |
+
content, constitutes a covered work. This License acknowledges your
|
195 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
196 |
+
|
197 |
+
You may make, run and propagate covered works that you do not
|
198 |
+
convey, without conditions so long as your license otherwise remains
|
199 |
+
in force. You may convey covered works to others for the sole purpose
|
200 |
+
of having them make modifications exclusively for you, or provide you
|
201 |
+
with facilities for running those works, provided that you comply with
|
202 |
+
the terms of this License in conveying all material for which you do
|
203 |
+
not control copyright. Those thus making or running the covered works
|
204 |
+
for you must do so exclusively on your behalf, under your direction
|
205 |
+
and control, on terms that prohibit them from making any copies of
|
206 |
+
your copyrighted material outside their relationship with you.
|
207 |
+
|
208 |
+
Conveying under any other circumstances is permitted solely under
|
209 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
210 |
+
makes it unnecessary.
|
211 |
+
|
212 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
213 |
+
|
214 |
+
No covered work shall be deemed part of an effective technological
|
215 |
+
measure under any applicable law fulfilling obligations under article
|
216 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
217 |
+
similar laws prohibiting or restricting circumvention of such
|
218 |
+
measures.
|
219 |
+
|
220 |
+
When you convey a covered work, you waive any legal power to forbid
|
221 |
+
circumvention of technological measures to the extent such circumvention
|
222 |
+
is effected by exercising rights under this License with respect to
|
223 |
+
the covered work, and you disclaim any intention to limit operation or
|
224 |
+
modification of the work as a means of enforcing, against the work's
|
225 |
+
users, your or third parties' legal rights to forbid circumvention of
|
226 |
+
technological measures.
|
227 |
+
|
228 |
+
4. Conveying Verbatim Copies.
|
229 |
+
|
230 |
+
You may convey verbatim copies of the Program's source code as you
|
231 |
+
receive it, in any medium, provided that you conspicuously and
|
232 |
+
appropriately publish on each copy an appropriate copyright notice;
|
233 |
+
keep intact all notices stating that this License and any
|
234 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
235 |
+
keep intact all notices of the absence of any warranty; and give all
|
236 |
+
recipients a copy of this License along with the Program.
|
237 |
+
|
238 |
+
You may charge any price or no price for each copy that you convey,
|
239 |
+
and you may offer support or warranty protection for a fee.
|
240 |
+
|
241 |
+
5. Conveying Modified Source Versions.
|
242 |
+
|
243 |
+
You may convey a work based on the Program, or the modifications to
|
244 |
+
produce it from the Program, in the form of source code under the
|
245 |
+
terms of section 4, provided that you also meet all of these conditions:
|
246 |
+
|
247 |
+
a) The work must carry prominent notices stating that you modified
|
248 |
+
it, and giving a relevant date.
|
249 |
+
|
250 |
+
b) The work must carry prominent notices stating that it is
|
251 |
+
released under this License and any conditions added under section
|
252 |
+
7. This requirement modifies the requirement in section 4 to
|
253 |
+
"keep intact all notices".
|
254 |
+
|
255 |
+
c) You must license the entire work, as a whole, under this
|
256 |
+
License to anyone who comes into possession of a copy. This
|
257 |
+
License will therefore apply, along with any applicable section 7
|
258 |
+
additional terms, to the whole of the work, and all its parts,
|
259 |
+
regardless of how they are packaged. This License gives no
|
260 |
+
permission to license the work in any other way, but it does not
|
261 |
+
invalidate such permission if you have separately received it.
|
262 |
+
|
263 |
+
d) If the work has interactive user interfaces, each must display
|
264 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
265 |
+
interfaces that do not display Appropriate Legal Notices, your
|
266 |
+
work need not make them do so.
|
267 |
+
|
268 |
+
A compilation of a covered work with other separate and independent
|
269 |
+
works, which are not by their nature extensions of the covered work,
|
270 |
+
and which are not combined with it such as to form a larger program,
|
271 |
+
in or on a volume of a storage or distribution medium, is called an
|
272 |
+
"aggregate" if the compilation and its resulting copyright are not
|
273 |
+
used to limit the access or legal rights of the compilation's users
|
274 |
+
beyond what the individual works permit. Inclusion of a covered work
|
275 |
+
in an aggregate does not cause this License to apply to the other
|
276 |
+
parts of the aggregate.
|
277 |
+
|
278 |
+
6. Conveying Non-Source Forms.
|
279 |
+
|
280 |
+
You may convey a covered work in object code form under the terms
|
281 |
+
of sections 4 and 5, provided that you also convey the
|
282 |
+
machine-readable Corresponding Source under the terms of this License,
|
283 |
+
in one of these ways:
|
284 |
+
|
285 |
+
a) Convey the object code in, or embodied in, a physical product
|
286 |
+
(including a physical distribution medium), accompanied by the
|
287 |
+
Corresponding Source fixed on a durable physical medium
|
288 |
+
customarily used for software interchange.
|
289 |
+
|
290 |
+
b) Convey the object code in, or embodied in, a physical product
|
291 |
+
(including a physical distribution medium), accompanied by a
|
292 |
+
written offer, valid for at least three years and valid for as
|
293 |
+
long as you offer spare parts or customer support for that product
|
294 |
+
model, to give anyone who possesses the object code either (1) a
|
295 |
+
copy of the Corresponding Source for all the software in the
|
296 |
+
product that is covered by this License, on a durable physical
|
297 |
+
medium customarily used for software interchange, for a price no
|
298 |
+
more than your reasonable cost of physically performing this
|
299 |
+
conveying of source, or (2) access to copy the
|
300 |
+
Corresponding Source from a network server at no charge.
|
301 |
+
|
302 |
+
c) Convey individual copies of the object code with a copy of the
|
303 |
+
written offer to provide the Corresponding Source. This
|
304 |
+
alternative is allowed only occasionally and noncommercially, and
|
305 |
+
only if you received the object code with such an offer, in accord
|
306 |
+
with subsection 6b.
|
307 |
+
|
308 |
+
d) Convey the object code by offering access from a designated
|
309 |
+
place (gratis or for a charge), and offer equivalent access to the
|
310 |
+
Corresponding Source in the same way through the same place at no
|
311 |
+
further charge. You need not require recipients to copy the
|
312 |
+
Corresponding Source along with the object code. If the place to
|
313 |
+
copy the object code is a network server, the Corresponding Source
|
314 |
+
may be on a different server (operated by you or a third party)
|
315 |
+
that supports equivalent copying facilities, provided you maintain
|
316 |
+
clear directions next to the object code saying where to find the
|
317 |
+
Corresponding Source. Regardless of what server hosts the
|
318 |
+
Corresponding Source, you remain obligated to ensure that it is
|
319 |
+
available for as long as needed to satisfy these requirements.
|
320 |
+
|
321 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
322 |
+
you inform other peers where the object code and Corresponding
|
323 |
+
Source of the work are being offered to the general public at no
|
324 |
+
charge under subsection 6d.
|
325 |
+
|
326 |
+
A separable portion of the object code, whose source code is excluded
|
327 |
+
from the Corresponding Source as a System Library, need not be
|
328 |
+
included in conveying the object code work.
|
329 |
+
|
330 |
+
A "User Product" is either (1) a "consumer product", which means any
|
331 |
+
tangible personal property which is normally used for personal, family,
|
332 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
333 |
+
into a dwelling. In determining whether a product is a consumer product,
|
334 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
335 |
+
product received by a particular user, "normally used" refers to a
|
336 |
+
typical or common use of that class of product, regardless of the status
|
337 |
+
of the particular user or of the way in which the particular user
|
338 |
+
actually uses, or expects or is expected to use, the product. A product
|
339 |
+
is a consumer product regardless of whether the product has substantial
|
340 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
341 |
+
the only significant mode of use of the product.
|
342 |
+
|
343 |
+
"Installation Information" for a User Product means any methods,
|
344 |
+
procedures, authorization keys, or other information required to install
|
345 |
+
and execute modified versions of a covered work in that User Product from
|
346 |
+
a modified version of its Corresponding Source. The information must
|
347 |
+
suffice to ensure that the continued functioning of the modified object
|
348 |
+
code is in no case prevented or interfered with solely because
|
349 |
+
modification has been made.
|
350 |
+
|
351 |
+
If you convey an object code work under this section in, or with, or
|
352 |
+
specifically for use in, a User Product, and the conveying occurs as
|
353 |
+
part of a transaction in which the right of possession and use of the
|
354 |
+
User Product is transferred to the recipient in perpetuity or for a
|
355 |
+
fixed term (regardless of how the transaction is characterized), the
|
356 |
+
Corresponding Source conveyed under this section must be accompanied
|
357 |
+
by the Installation Information. But this requirement does not apply
|
358 |
+
if neither you nor any third party retains the ability to install
|
359 |
+
modified object code on the User Product (for example, the work has
|
360 |
+
been installed in ROM).
|
361 |
+
|
362 |
+
The requirement to provide Installation Information does not include a
|
363 |
+
requirement to continue to provide support service, warranty, or updates
|
364 |
+
for a work that has been modified or installed by the recipient, or for
|
365 |
+
the User Product in which it has been modified or installed. Access to a
|
366 |
+
network may be denied when the modification itself materially and
|
367 |
+
adversely affects the operation of the network or violates the rules and
|
368 |
+
protocols for communication across the network.
|
369 |
+
|
370 |
+
Corresponding Source conveyed, and Installation Information provided,
|
371 |
+
in accord with this section must be in a format that is publicly
|
372 |
+
documented (and with an implementation available to the public in
|
373 |
+
source code form), and must require no special password or key for
|
374 |
+
unpacking, reading or copying.
|
375 |
+
|
376 |
+
7. Additional Terms.
|
377 |
+
|
378 |
+
"Additional permissions" are terms that supplement the terms of this
|
379 |
+
License by making exceptions from one or more of its conditions.
|
380 |
+
Additional permissions that are applicable to the entire Program shall
|
381 |
+
be treated as though they were included in this License, to the extent
|
382 |
+
that they are valid under applicable law. If additional permissions
|
383 |
+
apply only to part of the Program, that part may be used separately
|
384 |
+
under those permissions, but the entire Program remains governed by
|
385 |
+
this License without regard to the additional permissions.
|
386 |
+
|
387 |
+
When you convey a copy of a covered work, you may at your option
|
388 |
+
remove any additional permissions from that copy, or from any part of
|
389 |
+
it. (Additional permissions may be written to require their own
|
390 |
+
removal in certain cases when you modify the work.) You may place
|
391 |
+
additional permissions on material, added by you to a covered work,
|
392 |
+
for which you have or can give appropriate copyright permission.
|
393 |
+
|
394 |
+
Notwithstanding any other provision of this License, for material you
|
395 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
396 |
+
that material) supplement the terms of this License with terms:
|
397 |
+
|
398 |
+
a) Disclaiming warranty or limiting liability differently from the
|
399 |
+
terms of sections 15 and 16 of this License; or
|
400 |
+
|
401 |
+
b) Requiring preservation of specified reasonable legal notices or
|
402 |
+
author attributions in that material or in the Appropriate Legal
|
403 |
+
Notices displayed by works containing it; or
|
404 |
+
|
405 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
406 |
+
requiring that modified versions of such material be marked in
|
407 |
+
reasonable ways as different from the original version; or
|
408 |
+
|
409 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
410 |
+
authors of the material; or
|
411 |
+
|
412 |
+
e) Declining to grant rights under trademark law for use of some
|
413 |
+
trade names, trademarks, or service marks; or
|
414 |
+
|
415 |
+
f) Requiring indemnification of licensors and authors of that
|
416 |
+
material by anyone who conveys the material (or modified versions of
|
417 |
+
it) with contractual assumptions of liability to the recipient, for
|
418 |
+
any liability that these contractual assumptions directly impose on
|
419 |
+
those licensors and authors.
|
420 |
+
|
421 |
+
All other non-permissive additional terms are considered "further
|
422 |
+
restrictions" within the meaning of section 10. If the Program as you
|
423 |
+
received it, or any part of it, contains a notice stating that it is
|
424 |
+
governed by this License along with a term that is a further
|
425 |
+
restriction, you may remove that term. If a license document contains
|
426 |
+
a further restriction but permits relicensing or conveying under this
|
427 |
+
License, you may add to a covered work material governed by the terms
|
428 |
+
of that license document, provided that the further restriction does
|
429 |
+
not survive such relicensing or conveying.
|
430 |
+
|
431 |
+
If you add terms to a covered work in accord with this section, you
|
432 |
+
must place, in the relevant source files, a statement of the
|
433 |
+
additional terms that apply to those files, or a notice indicating
|
434 |
+
where to find the applicable terms.
|
435 |
+
|
436 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
437 |
+
form of a separately written license, or stated as exceptions;
|
438 |
+
the above requirements apply either way.
|
439 |
+
|
440 |
+
8. Termination.
|
441 |
+
|
442 |
+
You may not propagate or modify a covered work except as expressly
|
443 |
+
provided under this License. Any attempt otherwise to propagate or
|
444 |
+
modify it is void, and will automatically terminate your rights under
|
445 |
+
this License (including any patent licenses granted under the third
|
446 |
+
paragraph of section 11).
|
447 |
+
|
448 |
+
However, if you cease all violation of this License, then your
|
449 |
+
license from a particular copyright holder is reinstated (a)
|
450 |
+
provisionally, unless and until the copyright holder explicitly and
|
451 |
+
finally terminates your license, and (b) permanently, if the copyright
|
452 |
+
holder fails to notify you of the violation by some reasonable means
|
453 |
+
prior to 60 days after the cessation.
|
454 |
+
|
455 |
+
Moreover, your license from a particular copyright holder is
|
456 |
+
reinstated permanently if the copyright holder notifies you of the
|
457 |
+
violation by some reasonable means, this is the first time you have
|
458 |
+
received notice of violation of this License (for any work) from that
|
459 |
+
copyright holder, and you cure the violation prior to 30 days after
|
460 |
+
your receipt of the notice.
|
461 |
+
|
462 |
+
Termination of your rights under this section does not terminate the
|
463 |
+
licenses of parties who have received copies or rights from you under
|
464 |
+
this License. If your rights have been terminated and not permanently
|
465 |
+
reinstated, you do not qualify to receive new licenses for the same
|
466 |
+
material under section 10.
|
467 |
+
|
468 |
+
9. Acceptance Not Required for Having Copies.
|
469 |
+
|
470 |
+
You are not required to accept this License in order to receive or
|
471 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
472 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
473 |
+
to receive a copy likewise does not require acceptance. However,
|
474 |
+
nothing other than this License grants you permission to propagate or
|
475 |
+
modify any covered work. These actions infringe copyright if you do
|
476 |
+
not accept this License. Therefore, by modifying or propagating a
|
477 |
+
covered work, you indicate your acceptance of this License to do so.
|
478 |
+
|
479 |
+
10. Automatic Licensing of Downstream Recipients.
|
480 |
+
|
481 |
+
Each time you convey a covered work, the recipient automatically
|
482 |
+
receives a license from the original licensors, to run, modify and
|
483 |
+
propagate that work, subject to this License. You are not responsible
|
484 |
+
for enforcing compliance by third parties with this License.
|
485 |
+
|
486 |
+
An "entity transaction" is a transaction transferring control of an
|
487 |
+
organization, or substantially all assets of one, or subdividing an
|
488 |
+
organization, or merging organizations. If propagation of a covered
|
489 |
+
work results from an entity transaction, each party to that
|
490 |
+
transaction who receives a copy of the work also receives whatever
|
491 |
+
licenses to the work the party's predecessor in interest had or could
|
492 |
+
give under the previous paragraph, plus a right to possession of the
|
493 |
+
Corresponding Source of the work from the predecessor in interest, if
|
494 |
+
the predecessor has it or can get it with reasonable efforts.
|
495 |
+
|
496 |
+
You may not impose any further restrictions on the exercise of the
|
497 |
+
rights granted or affirmed under this License. For example, you may
|
498 |
+
not impose a license fee, royalty, or other charge for exercise of
|
499 |
+
rights granted under this License, and you may not initiate litigation
|
500 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
501 |
+
any patent claim is infringed by making, using, selling, offering for
|
502 |
+
sale, or importing the Program or any portion of it.
|
503 |
+
|
504 |
+
11. Patents.
|
505 |
+
|
506 |
+
A "contributor" is a copyright holder who authorizes use under this
|
507 |
+
License of the Program or a work on which the Program is based. The
|
508 |
+
work thus licensed is called the contributor's "contributor version".
|
509 |
+
|
510 |
+
A contributor's "essential patent claims" are all patent claims
|
511 |
+
owned or controlled by the contributor, whether already acquired or
|
512 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
513 |
+
by this License, of making, using, or selling its contributor version,
|
514 |
+
but do not include claims that would be infringed only as a
|
515 |
+
consequence of further modification of the contributor version. For
|
516 |
+
purposes of this definition, "control" includes the right to grant
|
517 |
+
patent sublicenses in a manner consistent with the requirements of
|
518 |
+
this License.
|
519 |
+
|
520 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
521 |
+
patent license under the contributor's essential patent claims, to
|
522 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
523 |
+
propagate the contents of its contributor version.
|
524 |
+
|
525 |
+
In the following three paragraphs, a "patent license" is any express
|
526 |
+
agreement or commitment, however denominated, not to enforce a patent
|
527 |
+
(such as an express permission to practice a patent or covenant not to
|
528 |
+
sue for patent infringement). To "grant" such a patent license to a
|
529 |
+
party means to make such an agreement or commitment not to enforce a
|
530 |
+
patent against the party.
|
531 |
+
|
532 |
+
If you convey a covered work, knowingly relying on a patent license,
|
533 |
+
and the Corresponding Source of the work is not available for anyone
|
534 |
+
to copy, free of charge and under the terms of this License, through a
|
535 |
+
publicly available network server or other readily accessible means,
|
536 |
+
then you must either (1) cause the Corresponding Source to be so
|
537 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
538 |
+
patent license for this particular work, or (3) arrange, in a manner
|
539 |
+
consistent with the requirements of this License, to extend the patent
|
540 |
+
license to downstream recipients. "Knowingly relying" means you have
|
541 |
+
actual knowledge that, but for the patent license, your conveying the
|
542 |
+
covered work in a country, or your recipient's use of the covered work
|
543 |
+
in a country, would infringe one or more identifiable patents in that
|
544 |
+
country that you have reason to believe are valid.
|
545 |
+
|
546 |
+
If, pursuant to or in connection with a single transaction or
|
547 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
548 |
+
covered work, and grant a patent license to some of the parties
|
549 |
+
receiving the covered work authorizing them to use, propagate, modify
|
550 |
+
or convey a specific copy of the covered work, then the patent license
|
551 |
+
you grant is automatically extended to all recipients of the covered
|
552 |
+
work and works based on it.
|
553 |
+
|
554 |
+
A patent license is "discriminatory" if it does not include within
|
555 |
+
the scope of its coverage, prohibits the exercise of, or is
|
556 |
+
conditioned on the non-exercise of one or more of the rights that are
|
557 |
+
specifically granted under this License. You may not convey a covered
|
558 |
+
work if you are a party to an arrangement with a third party that is
|
559 |
+
in the business of distributing software, under which you make payment
|
560 |
+
to the third party based on the extent of your activity of conveying
|
561 |
+
the work, and under which the third party grants, to any of the
|
562 |
+
parties who would receive the covered work from you, a discriminatory
|
563 |
+
patent license (a) in connection with copies of the covered work
|
564 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
565 |
+
for and in connection with specific products or compilations that
|
566 |
+
contain the covered work, unless you entered into that arrangement,
|
567 |
+
or that patent license was granted, prior to 28 March 2007.
|
568 |
+
|
569 |
+
Nothing in this License shall be construed as excluding or limiting
|
570 |
+
any implied license or other defenses to infringement that may
|
571 |
+
otherwise be available to you under applicable patent law.
|
572 |
+
|
573 |
+
12. No Surrender of Others' Freedom.
|
574 |
+
|
575 |
+
If conditions are imposed on you (whether by court order, agreement or
|
576 |
+
otherwise) that contradict the conditions of this License, they do not
|
577 |
+
excuse you from the conditions of this License. If you cannot convey a
|
578 |
+
covered work so as to satisfy simultaneously your obligations under this
|
579 |
+
License and any other pertinent obligations, then as a consequence you may
|
580 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
581 |
+
to collect a royalty for further conveying from those to whom you convey
|
582 |
+
the Program, the only way you could satisfy both those terms and this
|
583 |
+
License would be to refrain entirely from conveying the Program.
|
584 |
+
|
585 |
+
13. Use with the GNU Affero General Public License.
|
586 |
+
|
587 |
+
Notwithstanding any other provision of this License, you have
|
588 |
+
permission to link or combine any covered work with a work licensed
|
589 |
+
under version 3 of the GNU Affero General Public License into a single
|
590 |
+
combined work, and to convey the resulting work. The terms of this
|
591 |
+
License will continue to apply to the part which is the covered work,
|
592 |
+
but the special requirements of the GNU Affero General Public License,
|
593 |
+
section 13, concerning interaction through a network will apply to the
|
594 |
+
combination as such.
|
595 |
+
|
596 |
+
14. Revised Versions of this License.
|
597 |
+
|
598 |
+
The Free Software Foundation may publish revised and/or new versions of
|
599 |
+
the GNU General Public License from time to time. Such new versions will
|
600 |
+
be similar in spirit to the present version, but may differ in detail to
|
601 |
+
address new problems or concerns.
|
602 |
+
|
603 |
+
Each version is given a distinguishing version number. If the
|
604 |
+
Program specifies that a certain numbered version of the GNU General
|
605 |
+
Public License "or any later version" applies to it, you have the
|
606 |
+
option of following the terms and conditions either of that numbered
|
607 |
+
version or of any later version published by the Free Software
|
608 |
+
Foundation. If the Program does not specify a version number of the
|
609 |
+
GNU General Public License, you may choose any version ever published
|
610 |
+
by the Free Software Foundation.
|
611 |
+
|
612 |
+
If the Program specifies that a proxy can decide which future
|
613 |
+
versions of the GNU General Public License can be used, that proxy's
|
614 |
+
public statement of acceptance of a version permanently authorizes you
|
615 |
+
to choose that version for the Program.
|
616 |
+
|
617 |
+
Later license versions may give you additional or different
|
618 |
+
permissions. However, no additional obligations are imposed on any
|
619 |
+
author or copyright holder as a result of your choosing to follow a
|
620 |
+
later version.
|
621 |
+
|
622 |
+
15. Disclaimer of Warranty.
|
623 |
+
|
624 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
625 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
626 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
627 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
628 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
629 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
630 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
631 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
632 |
+
|
633 |
+
16. Limitation of Liability.
|
634 |
+
|
635 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
636 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
637 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
638 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
639 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
640 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
641 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
642 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
643 |
+
SUCH DAMAGES.
|
644 |
+
|
645 |
+
17. Interpretation of Sections 15 and 16.
|
646 |
+
|
647 |
+
If the disclaimer of warranty and limitation of liability provided
|
648 |
+
above cannot be given local legal effect according to their terms,
|
649 |
+
reviewing courts shall apply local law that most closely approximates
|
650 |
+
an absolute waiver of all civil liability in connection with the
|
651 |
+
Program, unless a warranty or assumption of liability accompanies a
|
652 |
+
copy of the Program in return for a fee.
|
653 |
+
|
midi_emotion/readme.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Generates multi-instrument symbolic music (MIDI), based on user-provided emotions from valence-arousal plane. In simpler words, it can generate happy (positive valence, positive arousal), calm (positive valence, negative arousal), angry (negative valence, positive arousal) or sad (negative valence, negative arousal) music.
|
2 |
+
|
3 |
+
Source code for our paper "Symbolic music generation conditioned on continuous-valued emotions",
|
4 |
+
Serkan Sulun, Matthew E. P. Davies, Paula Viana, 2022.
|
5 |
+
https://ieeexplore.ieee.org/document/9762257
|
6 |
+
|
7 |
+
To cite:
|
8 |
+
```S. Sulun, M. E. P. Davies and P. Viana, "Symbolic music generation conditioned on continuous-valued emotions," in IEEE Access, doi: 10.1109/ACCESS.2022.3169744.```
|
9 |
+
|
10 |
+
Required Python libraries: Numpy, Pytorch, Pandas, pretty_midi, Pypianoroll, tqdm, Spotipy, Pytables. Or run: ```pip install -r requirements.txt```
|
11 |
+
|
12 |
+
To create the Lakh-Spotify dataset:
|
13 |
+
|
14 |
+
- Go to the ```src/create_dataset``` folder
|
15 |
+
|
16 |
+
- Download the datasets:
|
17 |
+
|
18 |
+
[Lakh pianoroll 5 full dataset](https://ucsdcloud-my.sharepoint.com/personal/h3dong_ucsd_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fh3dong%5Fucsd%5Fedu%2FDocuments%2Fdata%2Flpd%2Flpd%5F5%2Flpd%5F5%5Ffull%2Etar%2Egz&parent=%2Fpersonal%2Fh3dong%5Fucsd%5Fedu%2FDocuments%2Fdata%2Flpd%2Flpd%5F5&ga=1)
|
19 |
+
|
20 |
+
MSD summary file
|
21 |
+
http://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/msd_summary_file.h5
|
22 |
+
|
23 |
+
Echonest mapping dataset
|
24 |
+
```ftp://ftp.acousticbrainz.org/pub/acousticbrainz/acousticbrainz-labs/download/msdrosetta/millionsongdataset_echonest.tar.bz2```
|
25 |
+
Alternatively: https://drive.google.com/file/d/17Exfxjtq7bI9EKtEZlOrBCkx8RBx7h77/view?usp=sharing
|
26 |
+
|
27 |
+
|
28 |
+
Lakh-MSD matching scores file
|
29 |
+
http://hog.ee.columbia.edu/craffel/lmd/match_scores.json
|
30 |
+
|
31 |
+
- Extract when necessary, and place all inside folder ```./data_files```
|
32 |
+
|
33 |
+
- Get Spotify client ID and client secret:
|
34 |
+
https://developer.spotify.com/dashboard/applications
|
35 |
+
Then, fill in the variables "client_id" and "client_secret" in ```src/create_dataset/utils.py```
|
36 |
+
|
37 |
+
- Run ```run.py```.
|
38 |
+
|
39 |
+
To preprocess and create the training dataset:
|
40 |
+
|
41 |
+
- Go to the ```src/data``` folder and run ```preprocess_pianorolls.py```
|
42 |
+
|
43 |
+
|
44 |
+
To generate MIDI using pretrained models:
|
45 |
+
|
46 |
+
- Download model(s) from the following link:
|
47 |
+
https://drive.google.com/drive/folders/1R5-HaXmNzXBAhGq1idrDF-YEKkZm5C8C?usp=sharing
|
48 |
+
|
49 |
+
- Extract into the folder ```output```
|
50 |
+
|
51 |
+
- Go to ```src``` folder and run ```generate.py``` with appropriate arguments. e.g:
|
52 |
+
```python generate.py --model_dir continuous_concat --conditioning continuous_concat --valence -0.8, -0.8 0.8 0.8 --arousal -0.8 -0.8 0.8 0.8```
|
53 |
+
|
54 |
+
|
55 |
+
To train:
|
56 |
+
|
57 |
+
- Go to ```src``` folder and run ```train.py``` with appropriate arguments. e.g:
|
58 |
+
```python train.py --conditioning continuous_concat```
|
59 |
+
|
60 |
+
There are 4 different conditioning modes:
|
61 |
+
```none```: No conditioning, vanilla model.
|
62 |
+
```discrete_token```: Conditioning using discrete tokens, i.e. control tokens.
|
63 |
+
```continuous_token```: Conditioning using continuous values embedded as vectors, then prepended to the other embedded tokens in sequence dimension.
|
64 |
+
```continuous_concat```: Conditioning using continuous values embedded as vectors, then concatenated to all other embedded tokens in channel dimension.
|
65 |
+
|
66 |
+
See ```config.py``` for all options.
|
midi_emotion/requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.0
|
2 |
+
pandas==1.2.5
|
3 |
+
pretty-midi==0.2.9
|
4 |
+
pypianoroll==1.0.4
|
5 |
+
spotipy==2.19.0
|
6 |
+
tables==3.6.1
|
7 |
+
torch==2.1.0
|
8 |
+
tqdm==4.61.1
|
midi_emotion/setup.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name="midi_emotion",
|
5 |
+
version="0.1.0",
|
6 |
+
packages=find_packages(),
|
7 |
+
install_requires=[
|
8 |
+
"torch",
|
9 |
+
"numpy",
|
10 |
+
"pretty_midi",
|
11 |
+
"tqdm"
|
12 |
+
]
|
13 |
+
)
|
midi_emotion/src/config.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
parser = argparse.ArgumentParser(description='Generates emotion-based symbolic music')
|
6 |
+
|
7 |
+
parser.add_argument("--conditioning", type=str, required=False, default="continuous_concat",
|
8 |
+
choices=["none", "discrete_token", "continuous_token",
|
9 |
+
"continuous_concat"], help='Conditioning type')
|
10 |
+
parser.add_argument("--data_folder", type=str, default="../data_files/lpd_5/lpd_5_full_transposable")
|
11 |
+
parser.add_argument('--full_dataset', action="store_true",
|
12 |
+
help='Use LPD-full dataset')
|
13 |
+
parser.add_argument('--n_layer', type=int, default=20,
|
14 |
+
help='number of total layers')
|
15 |
+
parser.add_argument('--n_head', type=int, default=16,
|
16 |
+
help='number of heads')
|
17 |
+
parser.add_argument('--d_model', type=int, default=768,
|
18 |
+
help='model dimension')
|
19 |
+
parser.add_argument('--d_condition', type=int, default=192,
|
20 |
+
help='condition dimension (if continuous_concat is used)')
|
21 |
+
parser.add_argument('--d_inner', type=int, default=768*4,
|
22 |
+
help='inner dimension in FF')
|
23 |
+
parser.add_argument('--tgt_len', type=int, default=1216,
|
24 |
+
help='number of tokens to predict')
|
25 |
+
parser.add_argument('--max_gen_input_len', type=int, default=-1,
|
26 |
+
help='number of tokens to predict')
|
27 |
+
parser.add_argument('--gen_len', type=int, default=2048,
|
28 |
+
help='Generation length')
|
29 |
+
parser.add_argument('--temp_note', type=float, default=1.2,
|
30 |
+
help='Temperature for generating notes')
|
31 |
+
parser.add_argument('--temp_rest', type=float, default=1.2,
|
32 |
+
help='Temperature for generating rests')
|
33 |
+
parser.add_argument('--n_bars', type=int, default=-1,
|
34 |
+
help='number of bars to use')
|
35 |
+
parser.add_argument('--no_pad', action='store_true',
|
36 |
+
help='dont pad sequences')
|
37 |
+
parser.add_argument('--eval_tgt_len', type=int, default=-1,
|
38 |
+
help='number of tokens to predict for evaluation')
|
39 |
+
parser.add_argument('--dropout', type=float, default=0.1,
|
40 |
+
help='global dropout rate')
|
41 |
+
parser.add_argument("--overwrite_dropout", action="store_true",
|
42 |
+
help="resets dropouts")
|
43 |
+
parser.add_argument('--lr', type=float, default=2e-5,
|
44 |
+
help='initial learning rate (0.00025|5 for adam|sgd)')
|
45 |
+
parser.add_argument("--overwrite_lr", action="store_true",
|
46 |
+
help="Overwrites learning rate if pretrained model is loaded.")
|
47 |
+
parser.add_argument('--arousal_feature', default='note_density', type=str,
|
48 |
+
choices=['tempo', 'note_density'],
|
49 |
+
help='Feature to use as arousal feature')
|
50 |
+
parser.add_argument('--scheduler', default='constant', type=str,
|
51 |
+
choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant', "cyclic"],
|
52 |
+
help='lr scheduler to use.')
|
53 |
+
parser.add_argument('--lr_min', type=float, default=5e-6,
|
54 |
+
help='minimum learning rate for cyclic scheduler')
|
55 |
+
parser.add_argument('--lr_max', type=float, default=5e-3,
|
56 |
+
help='maximum learning rate for cyclic scheduler')
|
57 |
+
parser.add_argument('--warmup_step', type=int, default=0,
|
58 |
+
help='upper epoch limit')
|
59 |
+
parser.add_argument('--decay_rate', type=float, default=0.5,
|
60 |
+
help='decay factor when ReduceLROnPlateau is used')
|
61 |
+
parser.add_argument('--clip', type=float, default=1.0,
|
62 |
+
help='gradient clipping')
|
63 |
+
parser.add_argument('--batch_size', type=int, default=4,
|
64 |
+
help='batch size')
|
65 |
+
parser.add_argument('--accumulate_step', type=int, default=1,
|
66 |
+
help='accumulate gradients (multiplies effective batch size')
|
67 |
+
parser.add_argument('--seed', type=int, default=-1,
|
68 |
+
help='random seed')
|
69 |
+
parser.add_argument('--no_cuda', action='store_true',
|
70 |
+
help='use CPU')
|
71 |
+
parser.add_argument('--log_step', type=int, default=1000,
|
72 |
+
help='report interval')
|
73 |
+
parser.add_argument('--eval_step', type=int, default=8000,
|
74 |
+
help='evaluation interval')
|
75 |
+
parser.add_argument('--max_eval_step', type=int, default=1000,
|
76 |
+
help='maximum evaluation steps')
|
77 |
+
parser.add_argument('--gen_step', type=int, default=8000,
|
78 |
+
help='generation interval')
|
79 |
+
parser.add_argument('--work_dir', default='../output', type=str,
|
80 |
+
help='experiment directory.')
|
81 |
+
parser.add_argument('--restart_dir', type=str, default=None,
|
82 |
+
help='restart dir')
|
83 |
+
parser.add_argument('--debug', action='store_true',
|
84 |
+
help='run in debug mode (do not create exp dir)')
|
85 |
+
parser.add_argument('--max_step', type=int, default=1000000000,
|
86 |
+
help='maximum training steps')
|
87 |
+
parser.add_argument('--overfit', action='store_true',
|
88 |
+
help='Works on a single sample')
|
89 |
+
parser.add_argument('--find_lr', action='store_true',
|
90 |
+
help='Run learning rate finder')
|
91 |
+
parser.add_argument('--num_workers', default=8, type=int,
|
92 |
+
help='Number of cores for data loading')
|
93 |
+
parser.add_argument('--bar_start_prob', type=float, default=0.5,
|
94 |
+
help=('probability of training sample'
|
95 |
+
' starting at a bar location'))
|
96 |
+
parser.add_argument("--n_samples", type=int, default=-1,
|
97 |
+
help="Limits number of training samples (for faster debugging)")
|
98 |
+
parser.add_argument('--n_emotion_bins', type=int, default=5,
|
99 |
+
help='Number of emotion bins in each dimension')
|
100 |
+
parser.add_argument('--max_transpose', type=int, default=3,
|
101 |
+
help='Maximum transpose amount')
|
102 |
+
parser.add_argument('--no_amp', action="store_true",
|
103 |
+
help='Disable automatic mixed precision')
|
104 |
+
parser.add_argument('--reset_scaler', action="store_true",
|
105 |
+
help="Reset scaler (can help avoiding nans)")
|
106 |
+
parser.add_argument('--exhaustive_eval', action="store_true",
|
107 |
+
help="Use data exhaustively (for final evaluation)")
|
108 |
+
parser.add_argument('--regression', action="store_true",
|
109 |
+
help="Train a regression model")
|
110 |
+
parser.add_argument("--always_use_discrete_condition", action="store_true",
|
111 |
+
help="Discrete tokens are used for every sequence")
|
112 |
+
parser.add_argument("--regression_dir", type=str, default=None,
|
113 |
+
help="The path of folder with generations, to perform regression on")
|
114 |
+
|
115 |
+
args = parser.parse_args()
|
116 |
+
|
117 |
+
if args.regression_dir is not None:
|
118 |
+
args.regression = True
|
119 |
+
|
120 |
+
if args.conditioning != "continuous_concat":
|
121 |
+
args.d_condition = -1
|
122 |
+
|
123 |
+
assert not (args.exhaustive_eval and args.max_eval_step > 0)
|
124 |
+
|
125 |
+
if args.full_dataset:
|
126 |
+
assert args.conditioning in ["discrete_token", "none"] and not args.regression, "LPD-full has NaN features"
|
127 |
+
|
128 |
+
if args.regression:
|
129 |
+
args.n_layer = 8
|
130 |
+
print("Using 8 layers for regression")
|
131 |
+
|
132 |
+
args.batch_chunk = -1
|
133 |
+
|
134 |
+
if args.debug or args.overfit:
|
135 |
+
args.num_workers = 0
|
136 |
+
|
137 |
+
if args.find_lr:
|
138 |
+
args.debug = True
|
139 |
+
|
140 |
+
args.d_embed = args.d_model
|
141 |
+
|
142 |
+
if args.eval_tgt_len < 0:
|
143 |
+
args.eval_tgt_len = args.tgt_len
|
144 |
+
|
145 |
+
if args.scheduler == "cyclic":
|
146 |
+
args.lr = args.lr_min
|
147 |
+
|
148 |
+
if args.restart_dir:
|
149 |
+
args.restart_dir = os.path.join(args.work_dir, args.restart_dir)
|
150 |
+
|
151 |
+
if args.debug:
|
152 |
+
args.work_dir = os.path.join(args.work_dir, "DEBUG_" + time.strftime('%Y%m%d-%H%M%S'))
|
153 |
+
elif args.no_cuda:
|
154 |
+
args.work_dir = os.path.join(args.work_dir, "CPU_" + time.strftime('%Y%m%d-%H%M%S'))
|
155 |
+
else:
|
156 |
+
args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S'))
|
midi_emotion/src/create_dataset/hdf5_getters.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Thierry Bertin-Mahieux (2010) Columbia University
|
3 | |
4 |
+
|
5 |
+
|
6 |
+
This code contains a set of getters functions to access the fields
|
7 |
+
from an HDF5 song file (regular file with one song or
|
8 |
+
aggregate / summary file with many songs)
|
9 |
+
|
10 |
+
This is part of the Million Song Dataset project from
|
11 |
+
LabROSA (Columbia University) and The Echo Nest.
|
12 |
+
|
13 |
+
|
14 |
+
Copyright 2010, Thierry Bertin-Mahieux
|
15 |
+
|
16 |
+
This program is free software: you can redistribute it and/or modify
|
17 |
+
it under the terms of the GNU General Public License as published by
|
18 |
+
the Free Software Foundation, either version 3 of the License, or
|
19 |
+
(at your option) any later version.
|
20 |
+
|
21 |
+
This program is distributed in the hope that it will be useful,
|
22 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
23 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
24 |
+
GNU General Public License for more details.
|
25 |
+
|
26 |
+
You should have received a copy of the GNU General Public License
|
27 |
+
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
import tables
|
32 |
+
|
33 |
+
|
34 |
+
def open_h5_file_read(h5filename):
|
35 |
+
"""
|
36 |
+
Open an existing H5 in read mode.
|
37 |
+
Same function as in hdf5_utils, here so we avoid one import
|
38 |
+
"""
|
39 |
+
return tables.open_file(h5filename, mode='r')
|
40 |
+
|
41 |
+
|
42 |
+
def get_num_songs(h5):
|
43 |
+
"""
|
44 |
+
Return the number of songs contained in this h5 file, i.e. the number of rows
|
45 |
+
for all basic informations like name, artist, ...
|
46 |
+
"""
|
47 |
+
return h5.root.metadata.songs.nrows
|
48 |
+
|
49 |
+
def get_artist_familiarity(h5,songidx=0):
|
50 |
+
"""
|
51 |
+
Get artist familiarity from a HDF5 song file, by default the first song in it
|
52 |
+
"""
|
53 |
+
return h5.root.metadata.songs.cols.artist_familiarity[songidx]
|
54 |
+
|
55 |
+
def get_artist_hotttnesss(h5,songidx=0):
|
56 |
+
"""
|
57 |
+
Get artist hotttnesss from a HDF5 song file, by default the first song in it
|
58 |
+
"""
|
59 |
+
return h5.root.metadata.songs.cols.artist_hotttnesss[songidx]
|
60 |
+
|
61 |
+
def get_artist_id(h5,songidx=0):
|
62 |
+
"""
|
63 |
+
Get artist id from a HDF5 song file, by default the first song in it
|
64 |
+
"""
|
65 |
+
return h5.root.metadata.songs.cols.artist_id[songidx]
|
66 |
+
|
67 |
+
def get_artist_mbid(h5,songidx=0):
|
68 |
+
"""
|
69 |
+
Get artist musibrainz id from a HDF5 song file, by default the first song in it
|
70 |
+
"""
|
71 |
+
return h5.root.metadata.songs.cols.artist_mbid[songidx]
|
72 |
+
|
73 |
+
def get_artist_playmeid(h5,songidx=0):
|
74 |
+
"""
|
75 |
+
Get artist playme id from a HDF5 song file, by default the first song in it
|
76 |
+
"""
|
77 |
+
return h5.root.metadata.songs.cols.artist_playmeid[songidx]
|
78 |
+
|
79 |
+
def get_artist_7digitalid(h5,songidx=0):
|
80 |
+
"""
|
81 |
+
Get artist 7digital id from a HDF5 song file, by default the first song in it
|
82 |
+
"""
|
83 |
+
return h5.root.metadata.songs.cols.artist_7digitalid[songidx]
|
84 |
+
|
85 |
+
def get_artist_latitude(h5,songidx=0):
|
86 |
+
"""
|
87 |
+
Get artist latitude from a HDF5 song file, by default the first song in it
|
88 |
+
"""
|
89 |
+
return h5.root.metadata.songs.cols.artist_latitude[songidx]
|
90 |
+
|
91 |
+
def get_artist_longitude(h5,songidx=0):
|
92 |
+
"""
|
93 |
+
Get artist longitude from a HDF5 song file, by default the first song in it
|
94 |
+
"""
|
95 |
+
return h5.root.metadata.songs.cols.artist_longitude[songidx]
|
96 |
+
|
97 |
+
def get_artist_location(h5,songidx=0):
|
98 |
+
"""
|
99 |
+
Get artist location from a HDF5 song file, by default the first song in it
|
100 |
+
"""
|
101 |
+
return h5.root.metadata.songs.cols.artist_location[songidx]
|
102 |
+
|
103 |
+
def get_artist_name(h5,songidx=0):
|
104 |
+
"""
|
105 |
+
Get artist name from a HDF5 song file, by default the first song in it
|
106 |
+
"""
|
107 |
+
return h5.root.metadata.songs.cols.artist_name[songidx]
|
108 |
+
|
109 |
+
def get_release(h5,songidx=0):
|
110 |
+
"""
|
111 |
+
Get release from a HDF5 song file, by default the first song in it
|
112 |
+
"""
|
113 |
+
return h5.root.metadata.songs.cols.release[songidx]
|
114 |
+
|
115 |
+
def get_release_7digitalid(h5,songidx=0):
|
116 |
+
"""
|
117 |
+
Get release 7digital id from a HDF5 song file, by default the first song in it
|
118 |
+
"""
|
119 |
+
return h5.root.metadata.songs.cols.release_7digitalid[songidx]
|
120 |
+
|
121 |
+
def get_song_id(h5,songidx=0):
|
122 |
+
"""
|
123 |
+
Get song id from a HDF5 song file, by default the first song in it
|
124 |
+
"""
|
125 |
+
return h5.root.metadata.songs.cols.song_id[songidx]
|
126 |
+
|
127 |
+
def get_song_hotttnesss(h5,songidx=0):
|
128 |
+
"""
|
129 |
+
Get song hotttnesss from a HDF5 song file, by default the first song in it
|
130 |
+
"""
|
131 |
+
return h5.root.metadata.songs.cols.song_hotttnesss[songidx]
|
132 |
+
|
133 |
+
def get_title(h5,songidx=0):
|
134 |
+
"""
|
135 |
+
Get title from a HDF5 song file, by default the first song in it
|
136 |
+
"""
|
137 |
+
return h5.root.metadata.songs.cols.title[songidx]
|
138 |
+
|
139 |
+
def get_track_7digitalid(h5,songidx=0):
|
140 |
+
"""
|
141 |
+
Get track 7digital id from a HDF5 song file, by default the first song in it
|
142 |
+
"""
|
143 |
+
return h5.root.metadata.songs.cols.track_7digitalid[songidx]
|
144 |
+
|
145 |
+
def get_similar_artists(h5,songidx=0):
|
146 |
+
"""
|
147 |
+
Get similar artists array. Takes care of the proper indexing if we are in aggregate
|
148 |
+
file. By default, return the array for the first song in the h5 file.
|
149 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
150 |
+
"""
|
151 |
+
if h5.root.metadata.songs.nrows == songidx + 1:
|
152 |
+
return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]:]
|
153 |
+
return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]:
|
154 |
+
h5.root.metadata.songs.cols.idx_similar_artists[songidx+1]]
|
155 |
+
|
156 |
+
def get_artist_terms(h5,songidx=0):
|
157 |
+
"""
|
158 |
+
Get artist terms array. Takes care of the proper indexing if we are in aggregate
|
159 |
+
file. By default, return the array for the first song in the h5 file.
|
160 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
161 |
+
"""
|
162 |
+
if h5.root.metadata.songs.nrows == songidx + 1:
|
163 |
+
return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
|
164 |
+
return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
|
165 |
+
h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
|
166 |
+
|
167 |
+
def get_artist_terms_freq(h5,songidx=0):
|
168 |
+
"""
|
169 |
+
Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate
|
170 |
+
file. By default, return the array for the first song in the h5 file.
|
171 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
172 |
+
"""
|
173 |
+
if h5.root.metadata.songs.nrows == songidx + 1:
|
174 |
+
return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
|
175 |
+
return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
|
176 |
+
h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
|
177 |
+
|
178 |
+
def get_artist_terms_weight(h5,songidx=0):
|
179 |
+
"""
|
180 |
+
Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate
|
181 |
+
file. By default, return the array for the first song in the h5 file.
|
182 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
183 |
+
"""
|
184 |
+
if h5.root.metadata.songs.nrows == songidx + 1:
|
185 |
+
return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
|
186 |
+
return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
|
187 |
+
h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
|
188 |
+
|
189 |
+
def get_analysis_sample_rate(h5,songidx=0):
|
190 |
+
"""
|
191 |
+
Get analysis sample rate from a HDF5 song file, by default the first song in it
|
192 |
+
"""
|
193 |
+
return h5.root.analysis.songs.cols.analysis_sample_rate[songidx]
|
194 |
+
|
195 |
+
def get_audio_md5(h5,songidx=0):
|
196 |
+
"""
|
197 |
+
Get audio MD5 from a HDF5 song file, by default the first song in it
|
198 |
+
"""
|
199 |
+
return h5.root.analysis.songs.cols.audio_md5[songidx]
|
200 |
+
|
201 |
+
def get_danceability(h5,songidx=0):
|
202 |
+
"""
|
203 |
+
Get danceability from a HDF5 song file, by default the first song in it
|
204 |
+
"""
|
205 |
+
return h5.root.analysis.songs.cols.danceability[songidx]
|
206 |
+
|
207 |
+
def get_duration(h5,songidx=0):
|
208 |
+
"""
|
209 |
+
Get duration from a HDF5 song file, by default the first song in it
|
210 |
+
"""
|
211 |
+
return h5.root.analysis.songs.cols.duration[songidx]
|
212 |
+
|
213 |
+
def get_end_of_fade_in(h5,songidx=0):
|
214 |
+
"""
|
215 |
+
Get end of fade in from a HDF5 song file, by default the first song in it
|
216 |
+
"""
|
217 |
+
return h5.root.analysis.songs.cols.end_of_fade_in[songidx]
|
218 |
+
|
219 |
+
def get_energy(h5,songidx=0):
|
220 |
+
"""
|
221 |
+
Get energy from a HDF5 song file, by default the first song in it
|
222 |
+
"""
|
223 |
+
return h5.root.analysis.songs.cols.energy[songidx]
|
224 |
+
|
225 |
+
def get_key(h5,songidx=0):
|
226 |
+
"""
|
227 |
+
Get key from a HDF5 song file, by default the first song in it
|
228 |
+
"""
|
229 |
+
return h5.root.analysis.songs.cols.key[songidx]
|
230 |
+
|
231 |
+
def get_key_confidence(h5,songidx=0):
|
232 |
+
"""
|
233 |
+
Get key confidence from a HDF5 song file, by default the first song in it
|
234 |
+
"""
|
235 |
+
return h5.root.analysis.songs.cols.key_confidence[songidx]
|
236 |
+
|
237 |
+
def get_loudness(h5,songidx=0):
|
238 |
+
"""
|
239 |
+
Get loudness from a HDF5 song file, by default the first song in it
|
240 |
+
"""
|
241 |
+
return h5.root.analysis.songs.cols.loudness[songidx]
|
242 |
+
|
243 |
+
def get_mode(h5,songidx=0):
|
244 |
+
"""
|
245 |
+
Get mode from a HDF5 song file, by default the first song in it
|
246 |
+
"""
|
247 |
+
return h5.root.analysis.songs.cols.mode[songidx]
|
248 |
+
|
249 |
+
def get_mode_confidence(h5,songidx=0):
|
250 |
+
"""
|
251 |
+
Get mode confidence from a HDF5 song file, by default the first song in it
|
252 |
+
"""
|
253 |
+
return h5.root.analysis.songs.cols.mode_confidence[songidx]
|
254 |
+
|
255 |
+
def get_start_of_fade_out(h5,songidx=0):
|
256 |
+
"""
|
257 |
+
Get start of fade out from a HDF5 song file, by default the first song in it
|
258 |
+
"""
|
259 |
+
return h5.root.analysis.songs.cols.start_of_fade_out[songidx]
|
260 |
+
|
261 |
+
def get_tempo(h5,songidx=0):
|
262 |
+
"""
|
263 |
+
Get tempo from a HDF5 song file, by default the first song in it
|
264 |
+
"""
|
265 |
+
return h5.root.analysis.songs.cols.tempo[songidx]
|
266 |
+
|
267 |
+
def get_time_signature(h5,songidx=0):
|
268 |
+
"""
|
269 |
+
Get signature from a HDF5 song file, by default the first song in it
|
270 |
+
"""
|
271 |
+
return h5.root.analysis.songs.cols.time_signature[songidx]
|
272 |
+
|
273 |
+
def get_time_signature_confidence(h5,songidx=0):
|
274 |
+
"""
|
275 |
+
Get signature confidence from a HDF5 song file, by default the first song in it
|
276 |
+
"""
|
277 |
+
return h5.root.analysis.songs.cols.time_signature_confidence[songidx]
|
278 |
+
|
279 |
+
def get_track_id(h5,songidx=0):
|
280 |
+
"""
|
281 |
+
Get track id from a HDF5 song file, by default the first song in it
|
282 |
+
"""
|
283 |
+
return h5.root.analysis.songs.cols.track_id[songidx]
|
284 |
+
|
285 |
+
def get_segments_start(h5,songidx=0):
|
286 |
+
"""
|
287 |
+
Get segments start array. Takes care of the proper indexing if we are in aggregate
|
288 |
+
file. By default, return the array for the first song in the h5 file.
|
289 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
290 |
+
"""
|
291 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
292 |
+
return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]:]
|
293 |
+
return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]:
|
294 |
+
h5.root.analysis.songs.cols.idx_segments_start[songidx+1]]
|
295 |
+
|
296 |
+
def get_segments_confidence(h5,songidx=0):
|
297 |
+
"""
|
298 |
+
Get segments confidence array. Takes care of the proper indexing if we are in aggregate
|
299 |
+
file. By default, return the array for the first song in the h5 file.
|
300 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
301 |
+
"""
|
302 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
303 |
+
return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]:]
|
304 |
+
return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]:
|
305 |
+
h5.root.analysis.songs.cols.idx_segments_confidence[songidx+1]]
|
306 |
+
|
307 |
+
def get_segments_pitches(h5,songidx=0):
|
308 |
+
"""
|
309 |
+
Get segments pitches array. Takes care of the proper indexing if we are in aggregate
|
310 |
+
file. By default, return the array for the first song in the h5 file.
|
311 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
312 |
+
"""
|
313 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
314 |
+
return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]:,:]
|
315 |
+
return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]:
|
316 |
+
h5.root.analysis.songs.cols.idx_segments_pitches[songidx+1],:]
|
317 |
+
|
318 |
+
def get_segments_timbre(h5,songidx=0):
|
319 |
+
"""
|
320 |
+
Get segments timbre array. Takes care of the proper indexing if we are in aggregate
|
321 |
+
file. By default, return the array for the first song in the h5 file.
|
322 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
323 |
+
"""
|
324 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
325 |
+
return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]:,:]
|
326 |
+
return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]:
|
327 |
+
h5.root.analysis.songs.cols.idx_segments_timbre[songidx+1],:]
|
328 |
+
|
329 |
+
def get_segments_loudness_max(h5,songidx=0):
|
330 |
+
"""
|
331 |
+
Get segments loudness max array. Takes care of the proper indexing if we are in aggregate
|
332 |
+
file. By default, return the array for the first song in the h5 file.
|
333 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
334 |
+
"""
|
335 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
336 |
+
return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]:]
|
337 |
+
return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]:
|
338 |
+
h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx+1]]
|
339 |
+
|
340 |
+
def get_segments_loudness_max_time(h5,songidx=0):
|
341 |
+
"""
|
342 |
+
Get segments loudness max time array. Takes care of the proper indexing if we are in aggregate
|
343 |
+
file. By default, return the array for the first song in the h5 file.
|
344 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
345 |
+
"""
|
346 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
347 |
+
return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]:]
|
348 |
+
return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]:
|
349 |
+
h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx+1]]
|
350 |
+
|
351 |
+
def get_segments_loudness_start(h5,songidx=0):
|
352 |
+
"""
|
353 |
+
Get segments loudness start array. Takes care of the proper indexing if we are in aggregate
|
354 |
+
file. By default, return the array for the first song in the h5 file.
|
355 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
356 |
+
"""
|
357 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
358 |
+
return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]:]
|
359 |
+
return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]:
|
360 |
+
h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx+1]]
|
361 |
+
|
362 |
+
def get_sections_start(h5,songidx=0):
|
363 |
+
"""
|
364 |
+
Get sections start array. Takes care of the proper indexing if we are in aggregate
|
365 |
+
file. By default, return the array for the first song in the h5 file.
|
366 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
367 |
+
"""
|
368 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
369 |
+
return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]:]
|
370 |
+
return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]:
|
371 |
+
h5.root.analysis.songs.cols.idx_sections_start[songidx+1]]
|
372 |
+
|
373 |
+
def get_sections_confidence(h5,songidx=0):
|
374 |
+
"""
|
375 |
+
Get sections confidence array. Takes care of the proper indexing if we are in aggregate
|
376 |
+
file. By default, return the array for the first song in the h5 file.
|
377 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
378 |
+
"""
|
379 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
380 |
+
return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]:]
|
381 |
+
return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]:
|
382 |
+
h5.root.analysis.songs.cols.idx_sections_confidence[songidx+1]]
|
383 |
+
|
384 |
+
def get_beats_start(h5,songidx=0):
|
385 |
+
"""
|
386 |
+
Get beats start array. Takes care of the proper indexing if we are in aggregate
|
387 |
+
file. By default, return the array for the first song in the h5 file.
|
388 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
389 |
+
"""
|
390 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
391 |
+
return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]:]
|
392 |
+
return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]:
|
393 |
+
h5.root.analysis.songs.cols.idx_beats_start[songidx+1]]
|
394 |
+
|
395 |
+
def get_beats_confidence(h5,songidx=0):
|
396 |
+
"""
|
397 |
+
Get beats confidence array. Takes care of the proper indexing if we are in aggregate
|
398 |
+
file. By default, return the array for the first song in the h5 file.
|
399 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
400 |
+
"""
|
401 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
402 |
+
return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]:]
|
403 |
+
return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]:
|
404 |
+
h5.root.analysis.songs.cols.idx_beats_confidence[songidx+1]]
|
405 |
+
|
406 |
+
def get_bars_start(h5,songidx=0):
|
407 |
+
"""
|
408 |
+
Get bars start array. Takes care of the proper indexing if we are in aggregate
|
409 |
+
file. By default, return the array for the first song in the h5 file.
|
410 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
411 |
+
"""
|
412 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
413 |
+
return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]:]
|
414 |
+
return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]:
|
415 |
+
h5.root.analysis.songs.cols.idx_bars_start[songidx+1]]
|
416 |
+
|
417 |
+
def get_bars_confidence(h5,songidx=0):
|
418 |
+
"""
|
419 |
+
Get bars start array. Takes care of the proper indexing if we are in aggregate
|
420 |
+
file. By default, return the array for the first song in the h5 file.
|
421 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
422 |
+
"""
|
423 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
424 |
+
return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]:]
|
425 |
+
return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]:
|
426 |
+
h5.root.analysis.songs.cols.idx_bars_confidence[songidx+1]]
|
427 |
+
|
428 |
+
def get_tatums_start(h5,songidx=0):
|
429 |
+
"""
|
430 |
+
Get tatums start array. Takes care of the proper indexing if we are in aggregate
|
431 |
+
file. By default, return the array for the first song in the h5 file.
|
432 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
433 |
+
"""
|
434 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
435 |
+
return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]:]
|
436 |
+
return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]:
|
437 |
+
h5.root.analysis.songs.cols.idx_tatums_start[songidx+1]]
|
438 |
+
|
439 |
+
def get_tatums_confidence(h5,songidx=0):
|
440 |
+
"""
|
441 |
+
Get tatums confidence array. Takes care of the proper indexing if we are in aggregate
|
442 |
+
file. By default, return the array for the first song in the h5 file.
|
443 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
444 |
+
"""
|
445 |
+
if h5.root.analysis.songs.nrows == songidx + 1:
|
446 |
+
return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]:]
|
447 |
+
return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]:
|
448 |
+
h5.root.analysis.songs.cols.idx_tatums_confidence[songidx+1]]
|
449 |
+
|
450 |
+
def get_artist_mbtags(h5,songidx=0):
|
451 |
+
"""
|
452 |
+
Get artist musicbrainz tag array. Takes care of the proper indexing if we are in aggregate
|
453 |
+
file. By default, return the array for the first song in the h5 file.
|
454 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
455 |
+
"""
|
456 |
+
if h5.root.musicbrainz.songs.nrows == songidx + 1:
|
457 |
+
return h5.root.musicbrainz.artist_mbtags[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:]
|
458 |
+
return h5.root.musicbrainz.artist_mbtags[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]:
|
459 |
+
h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]]
|
460 |
+
|
461 |
+
def get_artist_mbtags_count(h5,songidx=0):
|
462 |
+
"""
|
463 |
+
Get artist musicbrainz tag count array. Takes care of the proper indexing if we are in aggregate
|
464 |
+
file. By default, return the array for the first song in the h5 file.
|
465 |
+
To get a regular numpy ndarray, cast the result to: numpy.array( )
|
466 |
+
"""
|
467 |
+
if h5.root.musicbrainz.songs.nrows == songidx + 1:
|
468 |
+
return h5.root.musicbrainz.artist_mbtags_count[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:]
|
469 |
+
return h5.root.musicbrainz.artist_mbtags_count[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]:
|
470 |
+
h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]]
|
471 |
+
|
472 |
+
def get_year(h5,songidx=0):
|
473 |
+
"""
|
474 |
+
Get release year from a HDF5 song file, by default the first song in it
|
475 |
+
"""
|
476 |
+
return h5.root.musicbrainz.songs.cols.year[songidx]
|
midi_emotion/src/create_dataset/run.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import pretty_midi
|
3 |
+
import pypianoroll
|
4 |
+
import hdf5_getters
|
5 |
+
from tqdm import tqdm
|
6 |
+
import os
|
7 |
+
import concurrent.futures
|
8 |
+
import collections
|
9 |
+
import utils
|
10 |
+
from glob import glob
|
11 |
+
import pandas as pd
|
12 |
+
import csv
|
13 |
+
from copy import deepcopy
|
14 |
+
|
15 |
+
"""
|
16 |
+
Written by Serkan Sulun
|
17 |
+
|
18 |
+
Creates labels for Lakh MIDI (or pianoroll) dataset.
|
19 |
+
Labels include low-level MIDI features such as tempo, note density and number of MIDI files.
|
20 |
+
They also include high-level features obtained from Spotify Developer API, such as valence, energy, etc.
|
21 |
+
|
22 |
+
See utils.py and fill in the variables client_id and client_secret.
|
23 |
+
|
24 |
+
When the user quota is exceeded, Spotify blocks access and the script gets stuck.
|
25 |
+
In that case, you may need to re-run the script some time later,
|
26 |
+
or use a different account with different client ID and secret.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def run_parallel(func, my_iter):
|
30 |
+
# Parallel processing visualized with tqdm
|
31 |
+
with concurrent.futures.ProcessPoolExecutor() as executor:
|
32 |
+
results = list(tqdm(executor.map(func, my_iter), total=len(my_iter)))
|
33 |
+
return results
|
34 |
+
|
35 |
+
write = False
|
36 |
+
redo = True
|
37 |
+
|
38 |
+
main_output_dir = "../../data_files/features"
|
39 |
+
os.makedirs(main_output_dir, exist_ok=True)
|
40 |
+
|
41 |
+
match_scores_path = "../../data_files/match_scores.json"
|
42 |
+
msd_summary_path = "../../data_files/msd_summary_file.h5"
|
43 |
+
echonest_folder_path = "../../data_files/millionsongdataset_echonest"
|
44 |
+
|
45 |
+
use_pianoroll_dataset = True
|
46 |
+
if use_pianoroll_dataset:
|
47 |
+
midi_dataset_path = "../../data_files/lpd_full/lpd/lpd_full"
|
48 |
+
extension = ".npz"
|
49 |
+
output_dir = os.path.join(main_output_dir, "pianoroll")
|
50 |
+
else:
|
51 |
+
midi_dataset_path = "lmd_full"
|
52 |
+
extension = ".mid"
|
53 |
+
output_dir = os.path.join(main_output_dir, "midi")
|
54 |
+
os.makedirs(output_dir, exist_ok=True)
|
55 |
+
|
56 |
+
### PART I: Map track_ids (in midi dataset) to Spotify features
|
57 |
+
|
58 |
+
### 1- Create mappings track_id (in midi dataset) -> metadata (in Echonest)
|
59 |
+
|
60 |
+
output_path = os.path.join(output_dir, "trackid_to_songid.json")
|
61 |
+
|
62 |
+
with open(match_scores_path, "r") as f:
|
63 |
+
match_scores = json.load(f)
|
64 |
+
|
65 |
+
track_ids = sorted(list(match_scores.keys()))
|
66 |
+
|
67 |
+
if os.path.exists(output_path) and not redo:
|
68 |
+
with open(output_path, "r") as f:
|
69 |
+
trackid_to_songid = json.load(f)
|
70 |
+
else:
|
71 |
+
h5_msd = hdf5_getters.open_h5_file_read(msd_summary_path)
|
72 |
+
n_msd = hdf5_getters.get_num_songs(h5_msd)
|
73 |
+
|
74 |
+
trackid_to_songid = {}
|
75 |
+
print("Adding metadata to each track in Lakh dataset")
|
76 |
+
|
77 |
+
for i in tqdm(range(n_msd)):
|
78 |
+
track_id = hdf5_getters.get_track_id(h5_msd, i).decode("utf-8")
|
79 |
+
if track_id in track_ids:
|
80 |
+
# get data from MSD
|
81 |
+
song_id = hdf5_getters.get_song_id(h5_msd, i).decode("utf-8")
|
82 |
+
artist = hdf5_getters.get_artist_name(h5_msd, i).decode("utf-8")
|
83 |
+
title = hdf5_getters.get_title(h5_msd, i).decode("utf-8")
|
84 |
+
release = hdf5_getters.get_release(h5_msd, i).decode("utf-8")
|
85 |
+
trackid_to_songid[track_id] = {"song_id": song_id,"title": title,
|
86 |
+
"artist": artist, "release": release}
|
87 |
+
|
88 |
+
# sort
|
89 |
+
trackid_to_songid = collections.OrderedDict(sorted(trackid_to_songid.items()))
|
90 |
+
if write:
|
91 |
+
with open(output_path, "w") as f:
|
92 |
+
json.dump(trackid_to_songid, f, indent=4)
|
93 |
+
print(f"Output saved to {output_path}")
|
94 |
+
|
95 |
+
### 2- Create mappings metadata (in Echonest) -> Spotify IDs
|
96 |
+
output_path = os.path.join(output_dir, "songid_to_spotify.json")
|
97 |
+
if os.path.exists(output_path) and not redo:
|
98 |
+
with open(output_path, "r") as f:
|
99 |
+
songid_to_spotify = json.load(f)
|
100 |
+
else:
|
101 |
+
song_ids = sorted([val["song_id"] for val in trackid_to_songid.values()])
|
102 |
+
songid_to_spotify = {}
|
103 |
+
print("Mapping Echonest song IDs to Spotify song IDs")
|
104 |
+
for song_id in tqdm(song_ids):
|
105 |
+
file_path = os.path.join(echonest_folder_path, song_id[2:4], song_id + ".json")
|
106 |
+
spotify_ids = utils.get_spotify_ids(file_path)
|
107 |
+
songid_to_spotify[song_id] = spotify_ids
|
108 |
+
if write:
|
109 |
+
with open(output_path, "w") as f:
|
110 |
+
json.dump(songid_to_spotify, f, indent=4)
|
111 |
+
print(f"Output saved to {output_path}")
|
112 |
+
|
113 |
+
|
114 |
+
### 3- Merge and add Spotify features
|
115 |
+
output_path = os.path.join(output_dir, "trackid_to_spotify_features.json")
|
116 |
+
# When user quota is exceeded, Spotify blocks access and the script gets stuck.
|
117 |
+
# In that case, you may need to re-run the script some time later,
|
118 |
+
# or use a different account with different client ID and secret.
|
119 |
+
# So we keep an incomplete csv file, so that we can continue later from where we left.
|
120 |
+
output_path_incomplete = os.path.join(output_dir, "incomplete_trackid_to_spotify_features.csv")
|
121 |
+
|
122 |
+
if os.path.exists(output_path) and not redo:
|
123 |
+
with open(output_path, "r") as f:
|
124 |
+
trackid_to_spotify_features = json.load(f)
|
125 |
+
else:
|
126 |
+
fieldnames = ["track_id", "song_id", "title", "artist", "release",
|
127 |
+
"spotify_id", "spotify_title", "spotify_artist", "spotify_album", "spotify_audio_features"]
|
128 |
+
|
129 |
+
data_to_process = deepcopy(trackid_to_songid)
|
130 |
+
write_header = True
|
131 |
+
|
132 |
+
if os.path.exists(output_path_incomplete):
|
133 |
+
# Continue from where we've left
|
134 |
+
data_already_processed = utils.read_csv(output_path_incomplete)
|
135 |
+
track_ids_already_processed = [entry["track_id"] for entry in data_already_processed]
|
136 |
+
data_to_process = {key: value for key, value in data_to_process.items() if key not in track_ids_already_processed}
|
137 |
+
write_header = False
|
138 |
+
|
139 |
+
with open(output_path_incomplete, "a") as f_out:
|
140 |
+
csv_writer = csv.DictWriter(f_out, fieldnames=fieldnames)
|
141 |
+
if write_header:
|
142 |
+
csv_writer.writeheader()
|
143 |
+
|
144 |
+
print("Adding Spotify features")
|
145 |
+
for track_id, data in tqdm(data_to_process.items()):
|
146 |
+
data["track_id"] = track_id
|
147 |
+
album = data["release"]
|
148 |
+
spotify_ids = songid_to_spotify[data["song_id"]]
|
149 |
+
if spotify_ids == []:
|
150 |
+
# use metadata to search spotify
|
151 |
+
best_spotify_track = utils.search_spotify_flexible(data["title"], data["artist"], data["release"])
|
152 |
+
else:
|
153 |
+
spotify_tracks = utils.get_spotify_tracks(spotify_ids)
|
154 |
+
if spotify_tracks == None:
|
155 |
+
for key in ["id", "title", "artist", "album", "audio_features"]:
|
156 |
+
data["spotify_" + key] = None
|
157 |
+
elif len(spotify_tracks) > 1:
|
158 |
+
# find best spotify id by comparing album names
|
159 |
+
best_match_score = 0
|
160 |
+
best_match_ind = 0
|
161 |
+
for i, track in enumerate(spotify_tracks):
|
162 |
+
if track is not None:
|
163 |
+
spotify_album = track["album"]["name"] if track is not None else ""
|
164 |
+
match_score = utils.matching_strings_flexible(album, spotify_album)
|
165 |
+
|
166 |
+
if match_score > best_match_score:
|
167 |
+
best_match_score = match_score
|
168 |
+
best_match_ind = i
|
169 |
+
|
170 |
+
best_spotify_track = spotify_tracks[best_match_ind]
|
171 |
+
else:
|
172 |
+
best_spotify_track = spotify_tracks[0]
|
173 |
+
|
174 |
+
if best_spotify_track is not None:
|
175 |
+
spotify_id = best_spotify_track["uri"].split(":")[-1]
|
176 |
+
spotify_audio_features = utils.get_spotify_features(spotify_id)[0]
|
177 |
+
|
178 |
+
# if spotify_audio_features["valence"] == 0.0:
|
179 |
+
# # A large portion of files have 0.0 valence, although they are NaNs
|
180 |
+
# spotify_audio_features["valence"] = float("nan")
|
181 |
+
spotify_artists = ", ".join([artist["name"] for artist in best_spotify_track["artists"]])
|
182 |
+
|
183 |
+
data["spotify_id"] = spotify_id
|
184 |
+
data["spotify_title"] = best_spotify_track['name']
|
185 |
+
data["spotify_artist"] = spotify_artists
|
186 |
+
data["spotify_album"] = best_spotify_track["album"]["name"]
|
187 |
+
data["spotify_audio_features"] = spotify_audio_features
|
188 |
+
else:
|
189 |
+
for key in ["id", "title", "artist", "album", "audio_features"]:
|
190 |
+
data["spotify_" + key] = None
|
191 |
+
|
192 |
+
csv_writer.writerow(data)
|
193 |
+
|
194 |
+
# Now write final data to json
|
195 |
+
trackid_to_spotify_features_list = utils.read_csv(output_path_incomplete)
|
196 |
+
trackid_to_spotify_features = {}
|
197 |
+
# unlike json, csv doesnt support dict within dict, so convert it to dict manually
|
198 |
+
for item in trackid_to_spotify_features_list:
|
199 |
+
spotify_audio_features = item["spotify_audio_features"]
|
200 |
+
if spotify_audio_features != "":
|
201 |
+
spotify_audio_features = eval(spotify_audio_features)
|
202 |
+
item["spotify_audio_features"] = spotify_audio_features
|
203 |
+
track_id = deepcopy(item["track_id"])
|
204 |
+
del item["track_id"]
|
205 |
+
trackid_to_spotify_features[track_id] = item
|
206 |
+
|
207 |
+
if write:
|
208 |
+
with open(output_path, "w") as f:
|
209 |
+
json.dump(trackid_to_spotify_features, f, indent=4)
|
210 |
+
print(f"Output saved to {output_path}")
|
211 |
+
|
212 |
+
|
213 |
+
### PART II: Dealing with symbolic music data
|
214 |
+
### 4- Revert matching scores
|
215 |
+
""" Matched data has the format: track_ID -> midi_file
|
216 |
+
where multiple tracks could be mapped to a single midi file.
|
217 |
+
We want to revert this mapping and then keep unique midi files
|
218 |
+
Revert match scores file to have mapping midi_file -> track_ID
|
219 |
+
"""
|
220 |
+
|
221 |
+
output_path = os.path.join(output_dir, "match_scores_reverse.json")
|
222 |
+
if os.path.exists(output_path) and not redo:
|
223 |
+
with open(output_path, "r") as f:
|
224 |
+
match_scores_reversed = json.load(f)
|
225 |
+
else:
|
226 |
+
with open(match_scores_path, "r") as f:
|
227 |
+
in_data = json.load(f)
|
228 |
+
match_scores_reversed = {}
|
229 |
+
print("Reversing match scores.")
|
230 |
+
for track_id, matching in tqdm(in_data.items()):
|
231 |
+
for file_, score in matching.items():
|
232 |
+
if file_ not in match_scores_reversed.keys():
|
233 |
+
match_scores_reversed[file_] = {track_id: score}
|
234 |
+
else:
|
235 |
+
match_scores_reversed[file_][track_id] = score
|
236 |
+
|
237 |
+
# order match scores
|
238 |
+
for k in match_scores_reversed.keys():
|
239 |
+
match_scores_reversed[k] = collections.OrderedDict(sorted(match_scores_reversed[k].items(), reverse=True, key=lambda x: x[-1]))
|
240 |
+
|
241 |
+
# order filenames
|
242 |
+
match_scores_reversed = collections.OrderedDict(sorted(match_scores_reversed.items(), key=lambda x: x[0]))
|
243 |
+
if write:
|
244 |
+
with open(output_path, "w") as f:
|
245 |
+
json.dump(match_scores_reversed, f, indent=4)
|
246 |
+
print(f"Output saved to {output_path}")
|
247 |
+
|
248 |
+
# 5- Filter match scores to only keep best match
|
249 |
+
output_path = os.path.join(output_dir, "best_match_scores.json")
|
250 |
+
if os.path.exists(output_path) and not redo:
|
251 |
+
with open(output_path, "r") as f:
|
252 |
+
best_match_scores_reversed = json.load(f)
|
253 |
+
else:
|
254 |
+
best_match_scores_reversed = {}
|
255 |
+
print("Selecting best matching tracks.")
|
256 |
+
for midi_file, match in tqdm(match_scores_reversed.items()):
|
257 |
+
best_match_scores_reversed[midi_file] = list(match.items())[0]
|
258 |
+
if write:
|
259 |
+
with open(output_path, "w") as f:
|
260 |
+
json.dump(best_match_scores_reversed, f, indent=4)
|
261 |
+
print(f"Output saved to {output_path}")
|
262 |
+
|
263 |
+
### 6- Filter unique midis
|
264 |
+
"""LMD was created by creating hashes for the entire files
|
265 |
+
and then keeping files with unique hashes.
|
266 |
+
However, some files' musical content are the same, and only their metadata are different.
|
267 |
+
So we hash the content (pianoroll array), and further filter out the unique ones."""
|
268 |
+
# Create hashes for midis
|
269 |
+
|
270 |
+
output_path = os.path.join(output_dir, "hashes.json")
|
271 |
+
|
272 |
+
if os.path.exists(output_path) and not redo:
|
273 |
+
with open(output_path, "r") as f:
|
274 |
+
midi_file_to_hash = json.load(f)
|
275 |
+
else:
|
276 |
+
def get_hash_and_file(path):
|
277 |
+
hash_ = utils.get_hash(path)
|
278 |
+
file_ = os.path.basename(path)
|
279 |
+
file_ = file_[:-4]
|
280 |
+
return [file_, hash_]
|
281 |
+
|
282 |
+
file_paths = sorted(glob(midi_dataset_path + "/**/*" + extension, recursive=True))
|
283 |
+
assert len(file_paths) > 0, f"No MIDI files found at {midi_dataset_path}"
|
284 |
+
print("Getting hashes for MIDIs.")
|
285 |
+
midi_file_to_hash = run_parallel(get_hash_and_file, file_paths)
|
286 |
+
midi_file_to_hash = sorted(midi_file_to_hash, key=lambda x:x[0])
|
287 |
+
midi_file_to_hash = dict(midi_file_to_hash)
|
288 |
+
if write:
|
289 |
+
with open(output_path, "w") as f:
|
290 |
+
json.dump(midi_file_to_hash, f, indent=4)
|
291 |
+
print(f"Output saved to {output_path}")
|
292 |
+
|
293 |
+
# also do the reverse hash -> midi
|
294 |
+
output_path = os.path.join(output_dir, "unique_files.json")
|
295 |
+
if os.path.exists(output_path) and not redo:
|
296 |
+
with open(output_path, "r") as f:
|
297 |
+
midi_files_unique = json.load(f)
|
298 |
+
else:
|
299 |
+
hash_to_midi_file = {}
|
300 |
+
for midi_file, hash in midi_file_to_hash.items():
|
301 |
+
try:
|
302 |
+
best_match_score = best_match_scores_reversed[midi_file][1]
|
303 |
+
except:
|
304 |
+
best_match_score = 0
|
305 |
+
if hash in hash_to_midi_file.keys():
|
306 |
+
hash_to_midi_file[hash].append((midi_file, best_match_score))
|
307 |
+
else:
|
308 |
+
hash_to_midi_file[hash] = [(midi_file, best_match_score)]
|
309 |
+
|
310 |
+
midi_files_unique = []
|
311 |
+
# Get unique midis (with highest match score)
|
312 |
+
print("Getting unique MIDIs.")
|
313 |
+
for hash, midi_files_and_match_scores in hash_to_midi_file.items():
|
314 |
+
if hash != "empty_pianoroll":
|
315 |
+
midi_files_and_match_scores = sorted(midi_files_and_match_scores, key=lambda x: x[1], reverse=True)
|
316 |
+
midi_files_unique.append(midi_files_and_match_scores[0][0])
|
317 |
+
if write:
|
318 |
+
with open(output_path, "w") as f:
|
319 |
+
json.dump(midi_files_unique, f, indent=4)
|
320 |
+
print(f"Output saved to {output_path}")
|
321 |
+
|
322 |
+
# create unique matched midis list
|
323 |
+
midi_files_matched = list(match_scores_reversed.keys())
|
324 |
+
|
325 |
+
output_path = os.path.join(output_dir, "midis_matched_unique.json")
|
326 |
+
if os.path.exists(output_path) and not redo:
|
327 |
+
with open(output_path, "r") as f:
|
328 |
+
midi_files_matched_unique = json.load(f)
|
329 |
+
else:
|
330 |
+
print("Getting unique matched MIDIs.")
|
331 |
+
midi_files_matched_unique = sorted(list(set(midi_files_matched).intersection(midi_files_unique)))
|
332 |
+
if write:
|
333 |
+
with open(output_path, "w") as f:
|
334 |
+
json.dump(midi_files_matched_unique, f, indent=4)
|
335 |
+
print(f"Output saved to {output_path}")
|
336 |
+
|
337 |
+
# create unique unmatched midis list
|
338 |
+
output_path = os.path.join(output_dir, "midis_unmatched_unique.json")
|
339 |
+
if os.path.exists(output_path) and not redo:
|
340 |
+
with open(output_path, "r") as f:
|
341 |
+
midi_files_unmatched_unique = json.load(f)
|
342 |
+
else:
|
343 |
+
print("Getting unique unmatched MIDIs.")
|
344 |
+
midi_files_unmatched_unique = sorted(list(set(midi_files_unique) - set(midi_files_matched_unique)))
|
345 |
+
if write:
|
346 |
+
with open(output_path, "w") as f:
|
347 |
+
json.dump(midi_files_unmatched_unique, f, indent=4)
|
348 |
+
print(f"Output saved to {output_path}")
|
349 |
+
|
350 |
+
### 6- Create mappings: midi -> best matching track ID, spotify features
|
351 |
+
output_path = os.path.join(output_dir, "spotify_features.json")
|
352 |
+
if os.path.exists(output_path) and not redo:
|
353 |
+
with open(output_path, "r") as f:
|
354 |
+
midi_file_to_spotify_features = json.load(f)
|
355 |
+
else:
|
356 |
+
midi_file_to_spotify_features = {}
|
357 |
+
print("Adding Spotify for matched unique MIDIs.")
|
358 |
+
for pr in tqdm(midi_files_matched_unique):
|
359 |
+
sample_data = {}
|
360 |
+
sample_data["track_id"], sample_data["match_score"] = best_match_scores_reversed[pr]
|
361 |
+
metadata_and_spotify = trackid_to_spotify_features[sample_data["track_id"]]
|
362 |
+
sample_data.update(metadata_and_spotify)
|
363 |
+
midi_file_to_spotify_features[pr] = sample_data
|
364 |
+
if write:
|
365 |
+
with open(output_path, "w") as f:
|
366 |
+
json.dump(midi_file_to_spotify_features, f, indent=4)
|
367 |
+
print(f"Output saved to {output_path}")
|
368 |
+
|
369 |
+
### 7- For all midis, get low level features
|
370 |
+
# (tempo, note density, number of instruments)
|
371 |
+
|
372 |
+
output_path = os.path.join(output_dir, "midi_features.json")
|
373 |
+
if os.path.exists(output_path) and not redo:
|
374 |
+
with open(output_path, "r") as f:
|
375 |
+
midi_file_to_midi_features = json.load(f)
|
376 |
+
else:
|
377 |
+
def get_midi_features(midi_file):
|
378 |
+
midi_path = os.path.join(midi_dataset_path, midi_file[0], midi_file + extension)
|
379 |
+
if use_pianoroll_dataset:
|
380 |
+
mid = pypianoroll.load(midi_path).to_pretty_midi()
|
381 |
+
else:
|
382 |
+
mid = pretty_midi.PrettyMIDI(midi_path)
|
383 |
+
note_density = utils.get_note_density(mid)
|
384 |
+
tempo = utils.get_tempo(mid)
|
385 |
+
n_instruments = utils.get_n_instruments(mid)
|
386 |
+
duration = mid.get_end_time()
|
387 |
+
midi_features = {
|
388 |
+
"note_density": note_density,
|
389 |
+
"tempo": tempo,
|
390 |
+
"n_instruments": n_instruments,
|
391 |
+
"duration": duration,
|
392 |
+
}
|
393 |
+
return [midi_file, midi_features]
|
394 |
+
print("Getting low-level MIDI features")
|
395 |
+
midi_file_to_midi_features = run_parallel(get_midi_features, midi_files_unique)
|
396 |
+
midi_file_to_midi_features = dict(midi_file_to_midi_features)
|
397 |
+
if write:
|
398 |
+
with open(output_path, "w") as f:
|
399 |
+
json.dump(midi_file_to_midi_features, f, indent=4)
|
400 |
+
print(f"Output saved to {output_path}")
|
401 |
+
|
402 |
+
### 8- Merge MIDI features and matched (Spotify) features
|
403 |
+
output_path = os.path.join(output_dir, "full_dataset_features.json")
|
404 |
+
if os.path.exists(output_path) and not redo:
|
405 |
+
with open(output_path, "r") as f:
|
406 |
+
midi_file_to_merged_features = json.load(f)
|
407 |
+
else:
|
408 |
+
midi_file_to_merged_features = {}
|
409 |
+
print("Merging MIDI features and Spotify features for full dataset.")
|
410 |
+
for midi_file in tqdm(midi_file_to_midi_features.keys()):
|
411 |
+
midi_file_to_merged_features[midi_file] = {}
|
412 |
+
midi_file_to_merged_features[midi_file]["midi_features"] = midi_file_to_midi_features[midi_file]
|
413 |
+
if midi_file in midi_file_to_spotify_features.keys():
|
414 |
+
matched_features = midi_file_to_spotify_features[midi_file]
|
415 |
+
else:
|
416 |
+
matched_features = {}
|
417 |
+
midi_file_to_merged_features[midi_file]["matched_features"] = matched_features
|
418 |
+
if write:
|
419 |
+
with open(output_path, "w") as f:
|
420 |
+
json.dump(midi_file_to_merged_features, f, indent=4)
|
421 |
+
print(f"Output saved to {output_path}")
|
422 |
+
|
423 |
+
### Do the same for matched dataset
|
424 |
+
output_path = os.path.join(output_dir, "matched_dataset_features.json")
|
425 |
+
if os.path.exists(output_path) and not redo:
|
426 |
+
with open(output_path, "r") as f:
|
427 |
+
matched_midi_file_to_merged_features = json.load(f)
|
428 |
+
else:
|
429 |
+
print("Merging MIDI features and Spotify features for the matched dataset.")
|
430 |
+
matched_midi_file_to_merged_features = \
|
431 |
+
{file_: midi_file_to_merged_features[file_] for file_ in tqdm(midi_files_matched_unique)}
|
432 |
+
if write:
|
433 |
+
with open(output_path, "w") as f:
|
434 |
+
json.dump(matched_midi_file_to_merged_features, f, indent=4)
|
435 |
+
print(f"Output saved to {output_path}")
|
436 |
+
|
437 |
+
### PART III: Constructing training dataset
|
438 |
+
### 9- Summarize matched dataset features by only taking valence and note densities per instrument,
|
439 |
+
# number of instruments, durations, is_matched
|
440 |
+
|
441 |
+
output_path = os.path.join(output_dir, "full_dataset_features_summarized.csv")
|
442 |
+
if not os.path.exists(output_path) or redo:
|
443 |
+
print("Constructing training dataset (final file)")
|
444 |
+
dataset_summarized = []
|
445 |
+
for midi_file, features in tqdm(midi_file_to_merged_features.items()):
|
446 |
+
midi_features = features["midi_features"]
|
447 |
+
n_instruments = midi_features["n_instruments"]
|
448 |
+
note_density_per_instrument = midi_features["note_density"] / n_instruments
|
449 |
+
matched_features = features["matched_features"]
|
450 |
+
if matched_features == {}:
|
451 |
+
is_matched = False
|
452 |
+
valence = float("nan")
|
453 |
+
else:
|
454 |
+
is_matched = True
|
455 |
+
spotify_audio_features = matched_features["spotify_audio_features"]
|
456 |
+
if spotify_audio_features is None or spotify_audio_features == "":
|
457 |
+
valence = float("nan")
|
458 |
+
else:
|
459 |
+
if spotify_audio_features["valence"] == 0.0:
|
460 |
+
# An unusual number of samples have a valence of 0.0
|
461 |
+
# which is possibly due to an error. Feel free to comment out.
|
462 |
+
valence = float("nan")
|
463 |
+
else:
|
464 |
+
valence = spotify_audio_features["valence"]
|
465 |
+
|
466 |
+
dataset_summarized.append({
|
467 |
+
"file": midi_file,
|
468 |
+
"is_matched": is_matched,
|
469 |
+
"n_instruments": n_instruments,
|
470 |
+
"note_density_per_instrument": note_density_per_instrument,
|
471 |
+
"valence": valence
|
472 |
+
})
|
473 |
+
dataset_summarized = pd.DataFrame(dataset_summarized)
|
474 |
+
if write:
|
475 |
+
dataset_summarized.to_csv(output_path, index=False)
|
476 |
+
print(f"Output saved to {output_path}")
|
midi_emotion/src/create_dataset/utils.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spotipy
|
2 |
+
from spotipy.oauth2 import SpotifyClientCredentials
|
3 |
+
import re
|
4 |
+
import hashlib
|
5 |
+
import json
|
6 |
+
import pypianoroll
|
7 |
+
import numpy as np
|
8 |
+
import pretty_midi
|
9 |
+
import csv
|
10 |
+
|
11 |
+
"""
|
12 |
+
You'll need a client ID and a client secret:
|
13 |
+
https://developer.spotify.com/dashboard/applications
|
14 |
+
Then, fill in the variables client_id and client_secret
|
15 |
+
"""
|
16 |
+
|
17 |
+
client_id = 'c520641b167a4cd0872d48e5232a41e6'
|
18 |
+
client_secret = 'a455993eda164da2b67462c2e1382e91'
|
19 |
+
client_credentials_manager = SpotifyClientCredentials(client_id=client_id, client_secret=client_secret)
|
20 |
+
sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager)
|
21 |
+
|
22 |
+
def get_drums_note_density(mid):
|
23 |
+
drum_mid = pretty_midi.PrettyMIDI()
|
24 |
+
for instrument in mid.instruments:
|
25 |
+
if instrument.is_drum:
|
26 |
+
drum_mid.instruments.append(instrument)
|
27 |
+
if len(drum_mid.instruments) != 1 or len(drum_mid.instruments[0].notes) == 0:
|
28 |
+
return float("nan")
|
29 |
+
else:
|
30 |
+
start_time = drum_mid.instruments[0].notes[0].start
|
31 |
+
end_time = drum_mid.instruments[0].notes[-1].end
|
32 |
+
duration = end_time - start_time
|
33 |
+
n_notes = len(drum_mid.instruments[0].notes)
|
34 |
+
density = n_notes / duration
|
35 |
+
return density
|
36 |
+
|
37 |
+
def get_md5(path):
|
38 |
+
with open(path, "rb") as f:
|
39 |
+
md5 = hashlib.md5(f.read()).hexdigest()
|
40 |
+
return md5
|
41 |
+
|
42 |
+
def get_hash(path):
|
43 |
+
if path[-4:] == ".mid":
|
44 |
+
try:
|
45 |
+
mid = pretty_midi.PrettyMIDI(path)
|
46 |
+
except:
|
47 |
+
return "empty_pianoroll"
|
48 |
+
try:
|
49 |
+
rolls = mid.get_piano_roll()
|
50 |
+
except:
|
51 |
+
return "empty_pianoroll"
|
52 |
+
if rolls.size == 0:
|
53 |
+
return "empty_pianoroll"
|
54 |
+
else:
|
55 |
+
pr = pypianoroll.load(path)
|
56 |
+
tracks = sorted(pr.tracks, key=lambda x: x.name)
|
57 |
+
rolls = [track.pianoroll for track in tracks if track.pianoroll.shape[0] > 0]
|
58 |
+
if rolls == []:
|
59 |
+
return "empty_pianoroll"
|
60 |
+
rolls = np.concatenate(rolls, axis=-1)
|
61 |
+
hash_ = hashlib.sha1(np.ascontiguousarray(rolls)).hexdigest()
|
62 |
+
return hash_
|
63 |
+
|
64 |
+
def get_note_density(mid):
|
65 |
+
duration = mid.get_end_time()
|
66 |
+
n_notes = sum([1 for instrument in mid.instruments for note in instrument.notes])
|
67 |
+
density = n_notes / duration
|
68 |
+
return density
|
69 |
+
|
70 |
+
def get_tempo(mid):
|
71 |
+
tick_scale = mid._tick_scales[-1][-1]
|
72 |
+
resolution = mid.resolution
|
73 |
+
beat_duration = tick_scale * resolution
|
74 |
+
mid_tempo = 60 / beat_duration
|
75 |
+
return mid_tempo
|
76 |
+
|
77 |
+
def get_n_instruments(mid):
|
78 |
+
n_instruments = sum([1 for instrument in mid.instruments if instrument.notes != []])
|
79 |
+
return n_instruments
|
80 |
+
|
81 |
+
def try_multiple(func, *args, **kwargs):
|
82 |
+
n_max = 29
|
83 |
+
n = 0
|
84 |
+
failed = True
|
85 |
+
while failed:
|
86 |
+
if n > n_max:
|
87 |
+
return None
|
88 |
+
try:
|
89 |
+
if args:
|
90 |
+
out = func(*args)
|
91 |
+
elif kwargs:
|
92 |
+
out = func(**kwargs)
|
93 |
+
failed = False
|
94 |
+
except Exception as e:
|
95 |
+
# print(e.error_description)
|
96 |
+
if e.args[0] == 404:
|
97 |
+
return None
|
98 |
+
else:
|
99 |
+
n += 1
|
100 |
+
return out
|
101 |
+
|
102 |
+
def search_spotify(title, artist, album=None):
|
103 |
+
query = '"{}"+artist:"{}"'.format(title, artist)
|
104 |
+
if album is not None:
|
105 |
+
query += '+album:"{}"'.format(album)
|
106 |
+
if len(query) <= 250:
|
107 |
+
result = try_multiple(sp.search, q=query, type='track')
|
108 |
+
items = result['tracks']['items']
|
109 |
+
else: # spotify doesnt search with a query longer than 250 characters
|
110 |
+
items = []
|
111 |
+
return items
|
112 |
+
|
113 |
+
|
114 |
+
def search_spotify_flexible(title, artist, album):
|
115 |
+
# Find Spotify URI based on metadata
|
116 |
+
items = search_spotify(title, artist, album)
|
117 |
+
if items == []:
|
118 |
+
items = search_spotify(title, artist)
|
119 |
+
if items == []:
|
120 |
+
title = fix_string(title)
|
121 |
+
items = search_spotify(title, artist)
|
122 |
+
if items == []:
|
123 |
+
artist = fix_string(artist)
|
124 |
+
items = search_spotify(title, artist)
|
125 |
+
if items == []:
|
126 |
+
artist = strip_artist(artist)
|
127 |
+
items = search_spotify(title, artist)
|
128 |
+
if items == []:
|
129 |
+
return None
|
130 |
+
|
131 |
+
elif len(items) == 1:
|
132 |
+
item = items[0]
|
133 |
+
else:
|
134 |
+
# Return most popular
|
135 |
+
max_popularity = 0
|
136 |
+
best_ind = 0
|
137 |
+
for i, item in enumerate(items):
|
138 |
+
if item is not None:
|
139 |
+
if item["popularity"] > max_popularity:
|
140 |
+
max_popularity = item["popularity"]
|
141 |
+
best_ind = i
|
142 |
+
item = items[best_ind]
|
143 |
+
return item
|
144 |
+
|
145 |
+
def matching_strings_flexible(a, b):
|
146 |
+
if a == "" or b == "":
|
147 |
+
matches = 0.0
|
148 |
+
else:
|
149 |
+
a = fix_string(a)
|
150 |
+
b = fix_string(b)
|
151 |
+
a = a.replace("'", "")
|
152 |
+
b = b.replace("'", "")
|
153 |
+
min_len = min(len(a), len(b))
|
154 |
+
matches = 0
|
155 |
+
for i in range(min_len):
|
156 |
+
if a[i] == b[i]:
|
157 |
+
matches += 1
|
158 |
+
matches /= min_len
|
159 |
+
return matches
|
160 |
+
|
161 |
+
def get_spotify_features(uri_list):
|
162 |
+
features = try_multiple(sp.audio_features, uri_list)
|
163 |
+
return features
|
164 |
+
|
165 |
+
def get_spotify_tracks(uri_list):
|
166 |
+
if len(uri_list) > 50:
|
167 |
+
uri_list = uri_list[:50]
|
168 |
+
tracks = try_multiple(sp.tracks, uri_list)
|
169 |
+
if tracks == None:
|
170 |
+
return None
|
171 |
+
else:
|
172 |
+
return tracks["tracks"]
|
173 |
+
|
174 |
+
|
175 |
+
def strip_artist(s):
|
176 |
+
s = s.lower() # lowercase
|
177 |
+
s = s.replace("the ", "")
|
178 |
+
keys = [' - ', '/', ' ft', 'feat', 'featuring', ' and ', ' with ', '_', ' vs', '&', ';', '+']
|
179 |
+
for key in keys:
|
180 |
+
loc = s.find(key)
|
181 |
+
if loc != -1:
|
182 |
+
s = s[:loc]
|
183 |
+
return s
|
184 |
+
|
185 |
+
def fix_string(s):
|
186 |
+
if s != "":
|
187 |
+
s = s.lower() # lowercase
|
188 |
+
s = s.replace('\'s', '') # remove 's
|
189 |
+
s = s.replace('_', ' ') # remove _
|
190 |
+
s = re.sub("[\(\[].*?[\)\]]", "", s) # remove everything in parantheses
|
191 |
+
if s[-1] == " ": # remove space at the end
|
192 |
+
s = s[:-1]
|
193 |
+
return s
|
194 |
+
|
195 |
+
def logprint(s, f):
|
196 |
+
f.write(s + '\n')
|
197 |
+
|
198 |
+
def get_spotify_ids(json_path):
|
199 |
+
with open(json_path) as f_json:
|
200 |
+
json_data = json.load(f_json)
|
201 |
+
json_data = json_data["response"]["songs"]
|
202 |
+
if len(json_data) == 0:
|
203 |
+
spotify_ids = []
|
204 |
+
else:
|
205 |
+
json_data = json_data[0]
|
206 |
+
spotify_ids = []
|
207 |
+
for track in json_data["tracks"]:
|
208 |
+
if track["catalog"] == "spotify" and "foreign_id" in list(track.keys()):
|
209 |
+
spotify_ids.append(track["foreign_id"].split(":")[-1])
|
210 |
+
return spotify_ids
|
211 |
+
|
212 |
+
def read_csv(input_file_path, delimiter=","):
|
213 |
+
with open(input_file_path, "r") as f_in:
|
214 |
+
reader = csv.DictReader(f_in, delimiter=delimiter)
|
215 |
+
data = [{key: value for key, value in row.items()} for row in reader]
|
216 |
+
return data
|
midi_emotion/src/data/collate.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
# from torch._six import container_abcs, string_classes, int_classes
|
4 |
+
from torch._six import string_classes
|
5 |
+
import collections
|
6 |
+
"""
|
7 |
+
Modified by Serkan Sulun
|
8 |
+
Filters out None samples
|
9 |
+
"""
|
10 |
+
|
11 |
+
""""Contains definitions of the methods used by the _DataLoaderIter workers to
|
12 |
+
collate samples fetched from dataset into Tensor(s).
|
13 |
+
|
14 |
+
These **needs** to be in global scope since Py2 doesn't support serializing
|
15 |
+
static methods.
|
16 |
+
"""
|
17 |
+
|
18 |
+
_use_shared_memory = False
|
19 |
+
r"""Whether to use shared memory in batch_collate"""
|
20 |
+
|
21 |
+
np_str_obj_array_pattern = re.compile(r'[SaUO]')
|
22 |
+
|
23 |
+
error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}"
|
24 |
+
|
25 |
+
numpy_type_map = {
|
26 |
+
'float64': torch.DoubleTensor,
|
27 |
+
'float32': torch.FloatTensor,
|
28 |
+
'float16': torch.HalfTensor,
|
29 |
+
'int64': torch.LongTensor,
|
30 |
+
'int32': torch.IntTensor,
|
31 |
+
'int16': torch.ShortTensor,
|
32 |
+
'int8': torch.CharTensor,
|
33 |
+
'uint8': torch.ByteTensor,
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
def filter_collate(batch):
|
38 |
+
r"""Puts each data field into a tensor with outer dimension batch size"""
|
39 |
+
|
40 |
+
if isinstance(batch, list) or isinstance(batch, tuple):
|
41 |
+
batch = [i for i in batch if i is not None] # filter out None s
|
42 |
+
|
43 |
+
if batch != []:
|
44 |
+
elem_type = type(batch[0])
|
45 |
+
if isinstance(batch[0], torch.Tensor):
|
46 |
+
out = None
|
47 |
+
if _use_shared_memory:
|
48 |
+
# If we're in a background process, concatenate directly into a
|
49 |
+
# shared memory tensor to avoid an extra copy
|
50 |
+
numel = sum([x.numel() for x in batch])
|
51 |
+
storage = batch[0].storage()._new_shared(numel)
|
52 |
+
out = batch[0].new(storage)
|
53 |
+
return torch.stack(batch, 0, out=out)
|
54 |
+
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
55 |
+
and elem_type.__name__ != 'string_':
|
56 |
+
elem = batch[0]
|
57 |
+
if elem_type.__name__ == 'ndarray':
|
58 |
+
# array of string classes and object
|
59 |
+
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
|
60 |
+
raise TypeError(error_msg_fmt.format(elem.dtype))
|
61 |
+
|
62 |
+
return filter_collate([torch.from_numpy(b) for b in batch])
|
63 |
+
if elem.shape == (): # scalars
|
64 |
+
py_type = float if elem.dtype.name.startswith('float') else int
|
65 |
+
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
|
66 |
+
elif isinstance(batch[0], float):
|
67 |
+
return torch.tensor(batch, dtype=torch.float64)
|
68 |
+
elif isinstance(batch[0], int):
|
69 |
+
return torch.tensor(batch)
|
70 |
+
elif isinstance(batch[0], string_classes):
|
71 |
+
return batch
|
72 |
+
elif isinstance(batch[0], collections.abc.Mapping):
|
73 |
+
return {key: filter_collate([d[key] for d in batch]) for key in batch[0]}
|
74 |
+
elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'): # namedtuple
|
75 |
+
return type(batch[0])(*(filter_collate(samples) for samples in zip(*batch)))
|
76 |
+
elif isinstance(batch[0], collections.abc.Sequence):
|
77 |
+
transposed = zip(*batch)
|
78 |
+
return [filter_collate(samples) for samples in transposed]
|
79 |
+
|
80 |
+
raise TypeError((error_msg_fmt.format(type(batch[0]))))
|
81 |
+
else:
|
82 |
+
return batch
|
midi_emotion/src/data/data_processing.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pypianoroll
|
2 |
+
from operator import attrgetter
|
3 |
+
import torch
|
4 |
+
from copy import deepcopy
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Forward processing. (Midi to indices)
|
8 |
+
|
9 |
+
def read_pianoroll(fp, return_tempo=False):
|
10 |
+
# Reads pianoroll file and converts to PrettyMidi
|
11 |
+
pr = pypianoroll.load(fp)
|
12 |
+
mid = pr.to_pretty_midi()
|
13 |
+
if return_tempo:
|
14 |
+
tempo = np.mean(pr.tempo)
|
15 |
+
return mid, tempo
|
16 |
+
else:
|
17 |
+
return mid
|
18 |
+
|
19 |
+
def trim_midi(mid_orig, start, end, strict=True):
|
20 |
+
"""Trims midi file
|
21 |
+
|
22 |
+
Args:
|
23 |
+
mid (PrettyMidi): input midi file
|
24 |
+
start (float): start time
|
25 |
+
end (float): end time
|
26 |
+
strict (bool, optional):
|
27 |
+
If false, includes notes that starts earlier than start time,
|
28 |
+
and ends later than start time. Or ends later than end time,
|
29 |
+
but starts earlier than end time. The start and end times
|
30 |
+
are readjusted so they fit into the given boundaries.
|
31 |
+
Defaults to True.
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
(PrettyMidi): Trimmed output MIDI.
|
35 |
+
"""
|
36 |
+
eps = 1e-3
|
37 |
+
mid = deepcopy(mid_orig)
|
38 |
+
for ins in mid.instruments:
|
39 |
+
if strict:
|
40 |
+
ins.notes = [note for note in ins.notes if note.start >= start and note.end <= end]
|
41 |
+
else:
|
42 |
+
ins.notes = [note for note in ins.notes \
|
43 |
+
if note.end > start + eps and note.start < end - eps]
|
44 |
+
|
45 |
+
for note in ins.notes:
|
46 |
+
if not strict:
|
47 |
+
# readjustment
|
48 |
+
note.start = max(start, note.start)
|
49 |
+
note.end = min(end, note.end)
|
50 |
+
# Make the excerpt start at time zero
|
51 |
+
note.start -= start
|
52 |
+
note.end -= start
|
53 |
+
# Filter out empty tracks
|
54 |
+
mid.instruments = [ins for ins in mid.instruments if ins.notes]
|
55 |
+
return mid
|
56 |
+
|
57 |
+
|
58 |
+
def mid_to_timed_tuples(music, event_sym2idx, min_pitch: int = 21, max_pitch: int = 108):
|
59 |
+
# for sorting (though not absolutely necessary)
|
60 |
+
on_off_priority = ["ON", "OFF"]
|
61 |
+
ins_priority = ["DRUMS", "BASS", "GUITAR", "PIANO", "STRINGS"]
|
62 |
+
|
63 |
+
on_off_priority = {val: i for i, val in enumerate(on_off_priority)}
|
64 |
+
ins_priority = {val: i for i, val in enumerate(ins_priority)}
|
65 |
+
|
66 |
+
# Add instrument info to notes
|
67 |
+
for i, track in enumerate(music.instruments):
|
68 |
+
for note in track.notes:
|
69 |
+
note.instrument = track.name
|
70 |
+
|
71 |
+
# Collect notes
|
72 |
+
notes = []
|
73 |
+
for track in music.instruments:
|
74 |
+
notes.extend(track.notes)
|
75 |
+
|
76 |
+
# Raise an error if no notes is found
|
77 |
+
if not notes:
|
78 |
+
raise RuntimeError("No notes found.")
|
79 |
+
|
80 |
+
# Sort the notes
|
81 |
+
notes.sort(key=attrgetter("start", "pitch", "duration", "velocity", "instrument"))
|
82 |
+
|
83 |
+
# Collect note-related events
|
84 |
+
note_events = []
|
85 |
+
|
86 |
+
for note in notes:
|
87 |
+
if note.pitch >= min_pitch and note.pitch <= max_pitch:
|
88 |
+
|
89 |
+
start = round(note.start, 6)
|
90 |
+
end = round(note.end, 6)
|
91 |
+
|
92 |
+
ins = note.instrument.upper()
|
93 |
+
|
94 |
+
note_events.append((start, on_off_priority["ON"],
|
95 |
+
ins_priority[ins], (event_sym2idx["_".join(["ON", ins])], note.pitch)))
|
96 |
+
note_events.append((end, on_off_priority["OFF"],
|
97 |
+
ins_priority[ins], (event_sym2idx["_".join(["OFF", ins])], note.pitch)))
|
98 |
+
|
99 |
+
# Sort events by time
|
100 |
+
note_events = sorted(note_events)
|
101 |
+
note_events = [(note[0], note[-1]) for note in note_events]
|
102 |
+
return note_events
|
103 |
+
|
104 |
+
def timed_tuples_to_tuples(note_events, event_sym2idx, max_timeshift: int = 1000,
|
105 |
+
timeshift_step: int = 8):
|
106 |
+
|
107 |
+
# Create a list for all events
|
108 |
+
events = []
|
109 |
+
# Initialize the time cursor
|
110 |
+
time_cursor = int(round(note_events[0][0] * 1000))
|
111 |
+
# Iterate over note events
|
112 |
+
for time, symbol in note_events:
|
113 |
+
time = int(round(time * 1000))
|
114 |
+
if time > time_cursor:
|
115 |
+
timeshift = time - time_cursor
|
116 |
+
# First split timeshifts longer than max
|
117 |
+
n_max = timeshift // max_timeshift
|
118 |
+
for _ in range(n_max):
|
119 |
+
events.append((event_sym2idx["TIMESHIFT"], max_timeshift))
|
120 |
+
# quantize and add remaining
|
121 |
+
rem = timeshift % max_timeshift
|
122 |
+
if rem > 0:
|
123 |
+
# do not round to zero
|
124 |
+
rem = int(timeshift_step * round(float(rem) / timeshift_step))
|
125 |
+
if rem == 0:
|
126 |
+
rem = timeshift_step # do not round to zero
|
127 |
+
events.append((event_sym2idx["TIMESHIFT"], rem))
|
128 |
+
time_cursor = time
|
129 |
+
if symbol[0] != "<": # if not special symbol
|
130 |
+
events.append(symbol)
|
131 |
+
return events
|
132 |
+
|
133 |
+
|
134 |
+
def list_to_tensor(list_, sym2idx):
|
135 |
+
indices = [sym2idx[sym] for sym in list_]
|
136 |
+
indices = torch.LongTensor(indices)
|
137 |
+
return indices
|
138 |
+
|
139 |
+
|
140 |
+
def mid_to_bars(mid, event_sym2idx):
|
141 |
+
"""Takes MIDI, extracts bars
|
142 |
+
returns ndarray where each row is a token
|
143 |
+
each token has two elements,
|
144 |
+
first is an index of event, such as DRUMS_OFF, or TIMESHIFT
|
145 |
+
second is the value (pitch for note or time for timeshift)
|
146 |
+
"""
|
147 |
+
try:
|
148 |
+
bar_times = [round(bar, 6) for bar in mid.get_downbeats()]
|
149 |
+
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
|
150 |
+
bar_times.append(bar_times[-1] + (bar_times[-1] - bar_times[-2])) # to end
|
151 |
+
|
152 |
+
note_events = mid_to_timed_tuples(mid, event_sym2idx)
|
153 |
+
i_bar = -1
|
154 |
+
i_note = 0
|
155 |
+
bars = []
|
156 |
+
cur_bar_note_events = []
|
157 |
+
|
158 |
+
cur_bar_end = -float("inf")
|
159 |
+
while i_note < len(note_events):
|
160 |
+
time, note = note_events[i_note]
|
161 |
+
if time < cur_bar_end:
|
162 |
+
cur_bar_note_events.append((time, note))
|
163 |
+
i_note += 1
|
164 |
+
else:
|
165 |
+
cur_bar_note_events.append((cur_bar_end, "<BAR_END>"))
|
166 |
+
if len(cur_bar_note_events) > 2:
|
167 |
+
events = timed_tuples_to_tuples(cur_bar_note_events, event_sym2idx)
|
168 |
+
events = tuples_to_array(events)
|
169 |
+
bars.append(events)
|
170 |
+
i_bar += 1
|
171 |
+
cur_bar_start = bar_times[i_bar]
|
172 |
+
cur_bar_end = bar_times[i_bar+1]
|
173 |
+
cur_bar_note_events = [(cur_bar_start, "<BAR_START>")]
|
174 |
+
except:
|
175 |
+
bars = None
|
176 |
+
return bars
|
177 |
+
|
178 |
+
def tuples_to_array(x):
|
179 |
+
x = [list(el) for el in x]
|
180 |
+
x = np.asarray(x, dtype=np.int16)
|
181 |
+
return x
|
182 |
+
|
183 |
+
def get_maps(min_pitch=21,max_pitch=108,max_timeshift=1000,timeshift_step=8):
|
184 |
+
# Get mapping dictionary
|
185 |
+
instruments = ["DRUMS", "GUITAR", "BASS", "PIANO", "STRINGS"]
|
186 |
+
special_symbols = ["<PAD>", "<START>"]
|
187 |
+
on_offs = ["OFF", "ON"]
|
188 |
+
|
189 |
+
token_syms = deepcopy(special_symbols)
|
190 |
+
event_syms = []
|
191 |
+
transposable_event_syms = []
|
192 |
+
|
193 |
+
for ins in instruments:
|
194 |
+
for on_off in on_offs:
|
195 |
+
event_syms.append(f"{on_off}_{ins}")
|
196 |
+
if ins != "DRUMS":
|
197 |
+
transposable_event_syms.append(f"{on_off}_{ins}")
|
198 |
+
for pitch in range(min_pitch, max_pitch + 1):
|
199 |
+
token_syms.append((f"{on_off}_{ins}", pitch))
|
200 |
+
|
201 |
+
for timeshift in range(timeshift_step, max_timeshift + timeshift_step, timeshift_step):
|
202 |
+
token_syms.append(("TIMESHIFT", timeshift))
|
203 |
+
event_syms.append("TIMESHIFT")
|
204 |
+
|
205 |
+
map = {}
|
206 |
+
|
207 |
+
map["event2idx"] = {sym: idx for idx, sym in enumerate(event_syms)}
|
208 |
+
map["idx2event"] = {idx: sym for idx, sym in enumerate(event_syms)}
|
209 |
+
|
210 |
+
map["tuple2idx"] = {}
|
211 |
+
map["idx2tuple"] = {}
|
212 |
+
for idx, sym in enumerate(token_syms):
|
213 |
+
if isinstance(sym, tuple):
|
214 |
+
indexed_tuple = (map["event2idx"][sym[0]], sym[1])
|
215 |
+
else:
|
216 |
+
indexed_tuple = sym
|
217 |
+
map["tuple2idx"][indexed_tuple] = idx
|
218 |
+
map["idx2tuple"][idx] = indexed_tuple
|
219 |
+
|
220 |
+
transposable_event_inds = [map["event2idx"][sym] for sym in transposable_event_syms]
|
221 |
+
map["transposable_event_inds"] = transposable_event_inds
|
222 |
+
return map
|
223 |
+
|
224 |
+
|
225 |
+
def transpose(x, n, transposable_event_inds, min_pitch = 21, max_pitch = 108):
|
226 |
+
# Transpose melody
|
227 |
+
for i in range(x.size(0)):
|
228 |
+
if x[i, 0].item() in transposable_event_inds and \
|
229 |
+
x[i, 1].item() + n <= max_pitch and \
|
230 |
+
x[i, 1].item() + n >= min_pitch:
|
231 |
+
x[i, 1] += n
|
232 |
+
return x
|
233 |
+
|
234 |
+
def tuples_to_ind_tensor(x, tuple2idx):
|
235 |
+
# Tuples to indices
|
236 |
+
x = [tuple2idx[el] for el in x]
|
237 |
+
x = torch.tensor(x, dtype=torch.int16)
|
238 |
+
return x
|
239 |
+
|
240 |
+
def tensor_to_tuples(x):
|
241 |
+
x = [tuple(row.tolist()) for row in x]
|
242 |
+
return x
|
243 |
+
|
244 |
+
def tensor_to_ind_tensor(x, tuple2idx):
|
245 |
+
x = tensor_to_tuples(x)
|
246 |
+
x = tuples_to_ind_tensor(x, tuple2idx)
|
247 |
+
return x
|
midi_emotion/src/data/data_processing_reverse.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pretty_midi
|
2 |
+
import csv
|
3 |
+
|
4 |
+
# For reverse processing (TOKENS TO MIDI)
|
5 |
+
|
6 |
+
def tensor_to_tuples(x):
|
7 |
+
x = x.tolist()
|
8 |
+
x = [tuple(el) for el in x]
|
9 |
+
return x
|
10 |
+
|
11 |
+
|
12 |
+
def tuples_to_mid(x, idx2event, verbose=False):
|
13 |
+
# Tuples to midi
|
14 |
+
instrument_to_program = {"DRUMS": (0, True), "PIANO": (0, False), "GUITAR": (24, False),
|
15 |
+
"BASS": (32, False), "STRINGS": (48, False)}
|
16 |
+
velocities = {
|
17 |
+
"BASS": 127,
|
18 |
+
"DRUMS": 120,
|
19 |
+
"GUITAR": 95,
|
20 |
+
"PIANO": 110,
|
21 |
+
"STRINGS": 85,
|
22 |
+
}
|
23 |
+
|
24 |
+
tracks = {}
|
25 |
+
for key, val in instrument_to_program.items():
|
26 |
+
track = pretty_midi.Instrument(program=val[0], is_drum=val[1], name=key.lower())
|
27 |
+
track.notes = []
|
28 |
+
tracks.update({key: track})
|
29 |
+
|
30 |
+
active_notes = {}
|
31 |
+
|
32 |
+
time_cursor = 0
|
33 |
+
for el in x:
|
34 |
+
if el[0] != "<": # if not special token
|
35 |
+
event = idx2event[el[0]]
|
36 |
+
if "TIMESHIFT" == event:
|
37 |
+
timeshift = float(el[1])
|
38 |
+
time_cursor += timeshift / 1000.0
|
39 |
+
else:
|
40 |
+
on_off, instrument = event.split("_")
|
41 |
+
pitch = int(el[1])
|
42 |
+
if on_off == "ON":
|
43 |
+
active_notes.update({(instrument, pitch): time_cursor})
|
44 |
+
elif (instrument, pitch) in active_notes:
|
45 |
+
start = active_notes[(instrument, pitch)]
|
46 |
+
end = time_cursor
|
47 |
+
tracks[instrument].notes.append(pretty_midi.Note(velocities[instrument], pitch, start, end))
|
48 |
+
elif verbose:
|
49 |
+
print("Ignoring {:>15s} {:4} because there was no previos ""ON"" event".format(event, pitch))
|
50 |
+
|
51 |
+
mid = pretty_midi.PrettyMIDI()
|
52 |
+
mid.instruments += tracks.values()
|
53 |
+
return mid
|
54 |
+
|
55 |
+
|
56 |
+
def ind_tensor_to_tuples(x, ind2tuple):
|
57 |
+
# Indices to tuples
|
58 |
+
x = [ind2tuple[el.item()] for el in x]
|
59 |
+
return x
|
60 |
+
|
61 |
+
def tuples_to_str(x, idx2event):
|
62 |
+
# Tuples to strings
|
63 |
+
str_list = []
|
64 |
+
for el in x:
|
65 |
+
if el[0] == "<": # special token
|
66 |
+
str_list.append(el)
|
67 |
+
else:
|
68 |
+
str_list.append(idx2event[el[0]] + "_" + str(el[1]))
|
69 |
+
return str_list
|
70 |
+
|
71 |
+
def ind_tensor_to_mid(x, idx2tuple, idx2event, verbose=False):
|
72 |
+
# Indices to midi
|
73 |
+
x = ind_tensor_to_tuples(x, idx2tuple)
|
74 |
+
x = tuples_to_mid(x, idx2event, verbose=verbose)
|
75 |
+
return x
|
76 |
+
|
77 |
+
def ind_tensor_to_str(x, idx2tuple, idx2event):
|
78 |
+
# Indices to string
|
79 |
+
x = ind_tensor_to_tuples(x, idx2tuple)
|
80 |
+
x = tuples_to_str(x, idx2event)
|
81 |
+
return x
|
midi_emotion/src/data/loader.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from data.data_processing import transpose, tensor_to_ind_tensor
|
5 |
+
from data.data_processing_reverse import tuples_to_str
|
6 |
+
import sys
|
7 |
+
sys.path.append("..")
|
8 |
+
from utils import get_n_instruments
|
9 |
+
import os
|
10 |
+
|
11 |
+
"""
|
12 |
+
Main data loader
|
13 |
+
"""
|
14 |
+
|
15 |
+
class Loader:
|
16 |
+
|
17 |
+
def __init__(self, data_folder, data, input_len, conditioning, save_input_dir=None, pad=True,
|
18 |
+
use_start_token=True, use_end_token=False, max_transpose=3, n_try=5,
|
19 |
+
bar_start_prob=0.5, debug=False, overfit=False, regression=False,
|
20 |
+
max_samples=None, min_n_instruments=3, use_cls_token=True,
|
21 |
+
always_use_discrete_condition=False):
|
22 |
+
|
23 |
+
self.data_folder = data_folder
|
24 |
+
self.bar_start_prob = bar_start_prob
|
25 |
+
self.save_input_dir = save_input_dir
|
26 |
+
self.input_len = input_len
|
27 |
+
self.n_try = n_try # max number of trials to find suitable sample
|
28 |
+
self.min_n_instruments = min_n_instruments
|
29 |
+
self.overfit = overfit
|
30 |
+
self.one_sample = None
|
31 |
+
self.transpose_options = list(range(-max_transpose, max_transpose + 1))
|
32 |
+
self.conditioning = conditioning
|
33 |
+
self.regression = regression
|
34 |
+
self.use_cls_token = use_cls_token
|
35 |
+
self.pad = pad
|
36 |
+
self.always_use_discrete_condition = always_use_discrete_condition
|
37 |
+
|
38 |
+
self.pad_token = '<PAD>' if pad else None
|
39 |
+
self.start_token = '<START>' if use_start_token else None
|
40 |
+
self.end_token = '<END>' if use_end_token else None
|
41 |
+
self.cls_token = "<CLS>"
|
42 |
+
|
43 |
+
if debug or overfit:
|
44 |
+
data_folder = data_folder + "_debug"
|
45 |
+
|
46 |
+
self.data = data
|
47 |
+
|
48 |
+
data_files = os.listdir(self.data_folder)
|
49 |
+
self.data = [sample for sample in self.data if sample["file"] + '.pt' in data_files]
|
50 |
+
|
51 |
+
maps_file = os.path.join(os.path.abspath(data_folder + "/.."), "maps.pt")
|
52 |
+
self.maps = torch.load(maps_file)
|
53 |
+
|
54 |
+
extra_tokens = []
|
55 |
+
if self.conditioning == "continuous_token":
|
56 |
+
# two condition tokens will be concatenated later
|
57 |
+
self.input_len -= 2
|
58 |
+
elif self.conditioning == "discrete_token":
|
59 |
+
# add emotion tokens to mappings
|
60 |
+
for sample in self.data:
|
61 |
+
for label in ["valence", "arousal"]:
|
62 |
+
token = sample[label]
|
63 |
+
if token not in extra_tokens:
|
64 |
+
extra_tokens.append(token)
|
65 |
+
extra_tokens = sorted(extra_tokens)
|
66 |
+
|
67 |
+
if self.regression and self.use_cls_token:
|
68 |
+
extra_tokens.append(self.cls_token)
|
69 |
+
|
70 |
+
if extra_tokens != []:
|
71 |
+
# add to maps
|
72 |
+
maps_list = list(self.maps["idx2tuple"].values())
|
73 |
+
maps_list += extra_tokens
|
74 |
+
self.maps["idx2tuple"] = {i: val for i, val in enumerate(maps_list)}
|
75 |
+
self.maps["tuple2idx"] = {val: i for i, val in enumerate(maps_list)}
|
76 |
+
|
77 |
+
if max_samples is not None and not debug and not overfit:
|
78 |
+
self.data = self.data[:max_samples]
|
79 |
+
|
80 |
+
# roughly / 256, but *4 for flexibility. it is later cut anyway
|
81 |
+
self.n_bars = max(round(input_len / 256 * 4), 1)
|
82 |
+
|
83 |
+
|
84 |
+
def get_vocab_len(self):
|
85 |
+
return len(self.maps["tuple2idx"])
|
86 |
+
|
87 |
+
def get_maps(self):
|
88 |
+
return self.maps
|
89 |
+
|
90 |
+
def get_pad_idx(self):
|
91 |
+
return self.maps["tuple2idx"][self.pad_token]
|
92 |
+
|
93 |
+
def __len__(self):
|
94 |
+
return len(self.data)
|
95 |
+
|
96 |
+
def __getitem__(self, idx):
|
97 |
+
|
98 |
+
if not self.overfit or self.one_sample is None:
|
99 |
+
data_path = os.path.join(self.data_folder, self.data[idx]["file"] + ".pt")
|
100 |
+
item = torch.load(data_path)
|
101 |
+
all_bars = item["bars"]
|
102 |
+
|
103 |
+
n_instruments = 0
|
104 |
+
j = 0
|
105 |
+
while j < self.n_try and n_instruments < self.min_n_instruments:
|
106 |
+
# make sure to have n many instruments
|
107 |
+
# choose random bar
|
108 |
+
max_bar_start_idx = max(0, len(all_bars) - self.n_bars - 1)
|
109 |
+
bar_start_idx = random.randint(0, max_bar_start_idx)
|
110 |
+
bar_end_idx = min(len(all_bars), bar_start_idx + self.n_bars)
|
111 |
+
bars = all_bars[bar_start_idx:bar_end_idx]
|
112 |
+
# flatten
|
113 |
+
if bars != []:
|
114 |
+
bars = torch.cat(bars, dim=0)
|
115 |
+
symbols = tuples_to_str(bars.cpu().numpy(), self.maps["idx2event"])
|
116 |
+
n_instruments = get_n_instruments(symbols)
|
117 |
+
else:
|
118 |
+
n_instruments = 0
|
119 |
+
|
120 |
+
j += 1
|
121 |
+
if n_instruments < self.min_n_instruments:
|
122 |
+
return None, None, None
|
123 |
+
|
124 |
+
# transpose
|
125 |
+
if self.transpose_options != []:
|
126 |
+
n_transpose = random.choice(self.transpose_options)
|
127 |
+
bars = transpose(bars, n_transpose,
|
128 |
+
self.maps["transposable_event_inds"])
|
129 |
+
|
130 |
+
# convert to indices (final input)
|
131 |
+
bars = tensor_to_ind_tensor(bars, self.maps["tuple2idx"])
|
132 |
+
|
133 |
+
# Decide taking the sample from the start of a bar or not
|
134 |
+
r = np.random.uniform()
|
135 |
+
|
136 |
+
start_at_beginning = not (r > self.bar_start_prob and bars.size(0) > self.input_len)
|
137 |
+
|
138 |
+
if start_at_beginning:
|
139 |
+
# starts exactly at bar location
|
140 |
+
if self.start_token is not None:
|
141 |
+
# add start token
|
142 |
+
start_idx = torch.ShortTensor(
|
143 |
+
[self.maps["tuple2idx"][self.start_token]])
|
144 |
+
bars = torch.cat((start_idx, bars), dim=0)
|
145 |
+
else:
|
146 |
+
# it doesn't have to start at bar location so shift arbitrarily
|
147 |
+
start = np.random.randint(0, bars.size(0)-self.input_len)
|
148 |
+
bars = bars[start:start+self.input_len+1]
|
149 |
+
|
150 |
+
if self.regression and self.use_cls_token:
|
151 |
+
# prepend <CLS> token
|
152 |
+
cls_idx = torch.ShortTensor(
|
153 |
+
[self.maps["tuple2idx"][self.cls_token]])
|
154 |
+
bars = torch.cat((cls_idx, bars), 0)
|
155 |
+
|
156 |
+
# for now, no auxiliary conditions
|
157 |
+
condition = torch.FloatTensor([np.nan, np.nan])
|
158 |
+
if self.conditioning == "discrete_token" and \
|
159 |
+
(start_at_beginning or self.always_use_discrete_condition):
|
160 |
+
# add emotion tokens
|
161 |
+
valence, arousal = self.data[idx]["valence"], self.data[idx]["arousal"]
|
162 |
+
valence = torch.ShortTensor([self.maps["tuple2idx"][valence]])
|
163 |
+
arousal = torch.ShortTensor([self.maps["tuple2idx"][arousal]])
|
164 |
+
bars = torch.cat((valence, arousal, bars), dim=0)
|
165 |
+
elif self.conditioning in ("continuous_token", "continuous_concat") or self.regression:
|
166 |
+
# continuous conditions
|
167 |
+
condition = torch.FloatTensor([self.data[idx]["valence"], self.data[idx]["arousal"]])
|
168 |
+
|
169 |
+
bars = bars[:self.input_len + 1] # trim to length, +1 to include target
|
170 |
+
|
171 |
+
if self.pad_token is not None:
|
172 |
+
n_pad = self.input_len + 1 - bars.shape[0]
|
173 |
+
if n_pad > 0:
|
174 |
+
# pad if necessary
|
175 |
+
bars = torch.nn.functional.pad(bars, (0, n_pad), value=self.get_pad_idx())
|
176 |
+
|
177 |
+
bars = bars.long() # to int32
|
178 |
+
input_ = bars[:-1]
|
179 |
+
|
180 |
+
if self.regression:
|
181 |
+
target = None # will use condition as target
|
182 |
+
else:
|
183 |
+
target = bars[1:]
|
184 |
+
if self.conditioning == "continuous_token":
|
185 |
+
# pad target from left, because input will get conditions concatenated
|
186 |
+
# their sizes should match
|
187 |
+
target = torch.nn.functional.pad(target, (condition.size(0), 0), value=self.get_pad_idx())
|
188 |
+
|
189 |
+
if self.overfit:
|
190 |
+
self.one_sample = [input_, condition, target]
|
191 |
+
else:
|
192 |
+
# sanity check, using one sample repeatedly
|
193 |
+
input_, condition, target = self.one_sample
|
194 |
+
|
195 |
+
return input_, condition, target
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
midi_emotion/src/data/loader_exhaustive.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from data.data_processing import tensor_to_ind_tensor
|
5 |
+
import sys
|
6 |
+
sys.path.append("..")
|
7 |
+
|
8 |
+
import os
|
9 |
+
|
10 |
+
"""
|
11 |
+
Loads ALL data for exhaustive evaluation
|
12 |
+
"""
|
13 |
+
|
14 |
+
class LoaderExhaustive:
|
15 |
+
|
16 |
+
def __init__(self, data_folder, data, input_len, conditioning, save_input_dir=None, pad=True,
|
17 |
+
use_start_token=True, use_end_token=False, always_use_discrete_condition=False,
|
18 |
+
debug=False, overfit=False, regression=False,
|
19 |
+
max_samples=None, use_cls_token=True):
|
20 |
+
|
21 |
+
self.data_folder = data_folder
|
22 |
+
self.save_input_dir = save_input_dir
|
23 |
+
self.input_len = input_len
|
24 |
+
self.overfit = overfit
|
25 |
+
self.one_sample = None
|
26 |
+
self.conditioning = conditioning
|
27 |
+
self.regression = regression
|
28 |
+
|
29 |
+
|
30 |
+
if debug or overfit:
|
31 |
+
data_folder = data_folder + "_debug"
|
32 |
+
|
33 |
+
self.data = data
|
34 |
+
|
35 |
+
maps_file = os.path.join(data_folder, "maps.pt")
|
36 |
+
self.maps = torch.load(maps_file)
|
37 |
+
|
38 |
+
self.pad_token = '<PAD>' if pad else None
|
39 |
+
self.start_token = '<START>' if use_start_token else None
|
40 |
+
self.end_token = '<END>' if use_end_token else None
|
41 |
+
self.cls_token = "<CLS>"
|
42 |
+
|
43 |
+
|
44 |
+
extra_tokens = []
|
45 |
+
if self.conditioning == "continuous_token":
|
46 |
+
# two condition tokens will be concatenated later
|
47 |
+
self.input_len -= 2
|
48 |
+
elif self.conditioning == "discrete_token":
|
49 |
+
# two condition tokens will be concatenated later
|
50 |
+
self.input_len -= 2
|
51 |
+
# add emotion tokens to mappings
|
52 |
+
for sample in self.data:
|
53 |
+
for label in ["valence", "arousal"]:
|
54 |
+
token = sample[label]
|
55 |
+
if token not in extra_tokens:
|
56 |
+
extra_tokens.append(token)
|
57 |
+
extra_tokens = sorted(extra_tokens)
|
58 |
+
|
59 |
+
if self.regression and use_cls_token:
|
60 |
+
extra_tokens.append(self.cls_token)
|
61 |
+
self.input_len -= 1 # cls token
|
62 |
+
|
63 |
+
if self.regression:
|
64 |
+
chunk_len = self.input_len
|
65 |
+
else:
|
66 |
+
# +1 for target
|
67 |
+
chunk_len = self.input_len + 1
|
68 |
+
|
69 |
+
if extra_tokens != []:
|
70 |
+
# add to maps
|
71 |
+
maps_list = list(self.maps["idx2tuple"].values())
|
72 |
+
maps_list += extra_tokens
|
73 |
+
self.maps["idx2tuple"] = {i: val for i, val in enumerate(maps_list)}
|
74 |
+
self.maps["tuple2idx"] = {val: i for i, val in enumerate(maps_list)}
|
75 |
+
|
76 |
+
if max_samples is not None and not debug and not overfit:
|
77 |
+
self.data = self.data[:max_samples]
|
78 |
+
|
79 |
+
# Chunk entire data
|
80 |
+
chunked_data = []
|
81 |
+
print('Constructing data loader...')
|
82 |
+
for i in tqdm(range(len(self.data))):
|
83 |
+
|
84 |
+
data_path = os.path.join(data_folder, "lpd_5_full_transposable", self.data[i]["file"] + ".pt")
|
85 |
+
item = torch.load(data_path)
|
86 |
+
song = item["bars"]
|
87 |
+
|
88 |
+
if self.conditioning != 'none' or self.regression:
|
89 |
+
valence = self.data[i]["valence"]
|
90 |
+
arousal = self.data[i]["arousal"]
|
91 |
+
|
92 |
+
if self.conditioning in ("continuous_token", "continuous_concat") or self.regression:
|
93 |
+
condition = torch.FloatTensor([valence, arousal])
|
94 |
+
else:
|
95 |
+
condition = torch.FloatTensor([np.nan, np.nan])
|
96 |
+
|
97 |
+
song = torch.cat(song, 0)
|
98 |
+
song = tensor_to_ind_tensor(song, self.maps["tuple2idx"])
|
99 |
+
if self.start_token is not None:
|
100 |
+
# add start token
|
101 |
+
start_idx = torch.ShortTensor(
|
102 |
+
[self.maps["tuple2idx"][self.start_token]])
|
103 |
+
song = torch.cat((start_idx, song), 0)
|
104 |
+
|
105 |
+
if self.conditioning == "discrete_token":
|
106 |
+
condition_tokens = torch.ShortTensor([
|
107 |
+
self.maps["tuple2idx"][valence],
|
108 |
+
self.maps["tuple2idx"][arousal]])
|
109 |
+
if not always_use_discrete_condition:
|
110 |
+
song = torch.cat((condition_tokens, song), 0)
|
111 |
+
|
112 |
+
# split song into chunks
|
113 |
+
song = list(torch.split(song, chunk_len)) # +1 for target
|
114 |
+
if song[-1].size(0) != chunk_len:
|
115 |
+
song.pop(-1)
|
116 |
+
|
117 |
+
if self.regression and use_cls_token:
|
118 |
+
# prepend <CLS> token
|
119 |
+
cls_idx = torch.ShortTensor(
|
120 |
+
[self.maps["tuple2idx"][self.cls_token]])
|
121 |
+
|
122 |
+
song = [torch.cat((cls_idx, x), 0) for x in song]
|
123 |
+
|
124 |
+
if self.conditioning == "discrete_token" and always_use_discrete_condition:
|
125 |
+
song = [torch.cat((condition_tokens, x), 0) for x in song]
|
126 |
+
|
127 |
+
song = [(x, condition) for x in song]
|
128 |
+
|
129 |
+
chunked_data += song
|
130 |
+
|
131 |
+
self.data = chunked_data
|
132 |
+
print('Data loader constructed.')
|
133 |
+
|
134 |
+
def get_vocab_len(self):
|
135 |
+
return len(self.maps["tuple2idx"])
|
136 |
+
|
137 |
+
def get_maps(self):
|
138 |
+
return self.maps
|
139 |
+
|
140 |
+
def get_pad_idx(self):
|
141 |
+
return self.maps["tuple2idx"][self.pad_token]
|
142 |
+
|
143 |
+
def __len__(self):
|
144 |
+
return len(self.data)
|
145 |
+
|
146 |
+
def __getitem__(self, idx):
|
147 |
+
chunk, condition = self.data[idx]
|
148 |
+
chunk = chunk.long()
|
149 |
+
|
150 |
+
if self.regression:
|
151 |
+
input_ = chunk
|
152 |
+
target = None # will use condition as target
|
153 |
+
else:
|
154 |
+
input_ = chunk[:-1]
|
155 |
+
target = chunk[1:]
|
156 |
+
|
157 |
+
if self.conditioning == "continuous_token":
|
158 |
+
# pad target from left, because input will get conditions concatenated
|
159 |
+
# their sizes should match
|
160 |
+
target = torch.nn.functional.pad(target, (condition.size(0), 0), value=self.get_pad_idx())
|
161 |
+
|
162 |
+
return input_, condition, target
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
midi_emotion/src/data/loader_generations.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glob import glob
|
2 |
+
import os
|
3 |
+
from tkinter import TRUE
|
4 |
+
import torch
|
5 |
+
import sys
|
6 |
+
sys.path.append("..")
|
7 |
+
|
8 |
+
"""
|
9 |
+
Data loader to perform regression on a folder with generations
|
10 |
+
"""
|
11 |
+
|
12 |
+
class LoaderGenerations:
|
13 |
+
|
14 |
+
def __init__(self, gen_folder, seq_len, pad=True, use_start_token=True, use_end_token=False,
|
15 |
+
use_cls_token=TRUE, overlap=0.5):
|
16 |
+
|
17 |
+
self.seq_len = seq_len
|
18 |
+
self.one_sample = None
|
19 |
+
|
20 |
+
self.pad = pad
|
21 |
+
|
22 |
+
self.pad_token = '<PAD>' if pad else None
|
23 |
+
self.start_token = '<START>' if use_start_token else None
|
24 |
+
self.end_token = '<END>' if use_end_token else None
|
25 |
+
self.cls_token = "<CLS>" if use_cls_token else None
|
26 |
+
|
27 |
+
data_paths = glob(os.path.join("../output", gen_folder, "*.pt"), recursive=True)
|
28 |
+
|
29 |
+
maps = torch.load("../datasets/lpd_5/w_emotion_transposable/maps.pt")
|
30 |
+
n_vocab = len(maps["tuple2idx"])
|
31 |
+
|
32 |
+
self.data = []
|
33 |
+
|
34 |
+
if self.cls_token is not None:
|
35 |
+
seq_len -= 1
|
36 |
+
if self.cls_token not in maps["tuple2idx"].keys():
|
37 |
+
# add <CLS> token to vobac
|
38 |
+
maps["tuple2idx"][self.cls_token] = len(maps["idx2tuple"])
|
39 |
+
maps["idx2tuple"][len(maps["idx2tuple"])] = self.cls_token
|
40 |
+
# prepend <CLS> token
|
41 |
+
cls_idx = torch.ShortTensor(
|
42 |
+
[maps["tuple2idx"][self.cls_token]])
|
43 |
+
|
44 |
+
for data_path in data_paths:
|
45 |
+
generation = torch.load(data_path)
|
46 |
+
inds = generation["inds"]
|
47 |
+
# remove special tokens
|
48 |
+
inds = inds[inds < n_vocab]
|
49 |
+
# split with overlap
|
50 |
+
inds = inds.unfold(0, seq_len, int(seq_len*(1-overlap)))
|
51 |
+
inds = list(torch.split(inds, 1, dim=0))
|
52 |
+
inds = [sample.squeeze() for sample in inds]
|
53 |
+
|
54 |
+
if self.cls_token is not None:
|
55 |
+
inds = [torch.cat((cls_idx, sample), dim=0) for sample in inds]
|
56 |
+
|
57 |
+
condition = generation["condition"]
|
58 |
+
if inds[-1].size(0) != seq_len:
|
59 |
+
inds.pop()
|
60 |
+
self.data += [(sample, condition) for sample in inds]
|
61 |
+
|
62 |
+
|
63 |
+
self.discrete2continuous = {
|
64 |
+
"-2": -0.8,
|
65 |
+
"-1": -0.4,
|
66 |
+
"0": 0,
|
67 |
+
"1": 0.4,
|
68 |
+
"2": 0.8
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
def get_vocab_len(self):
|
73 |
+
return None
|
74 |
+
|
75 |
+
def get_maps(self):
|
76 |
+
return None
|
77 |
+
|
78 |
+
def get_pad_idx(self):
|
79 |
+
return None
|
80 |
+
|
81 |
+
def __len__(self):
|
82 |
+
return len(self.data)
|
83 |
+
|
84 |
+
def __getitem__(self, idx):
|
85 |
+
|
86 |
+
input_, condition = self.data[idx]
|
87 |
+
if input_.size(0) != self.seq_len:
|
88 |
+
Warning(f"Input length is {input_.size(0)}")
|
89 |
+
return None, None, None
|
90 |
+
if isinstance(condition[0], str):
|
91 |
+
condition = condition[:2]
|
92 |
+
for i in range(len(condition)):
|
93 |
+
condition[i] = self.discrete2continuous[condition[i][2:-1]]
|
94 |
+
condition = torch.Tensor(condition)
|
95 |
+
|
96 |
+
input_ = input_.cpu()
|
97 |
+
condition = condition.cpu()
|
98 |
+
return input_, condition, None
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
midi_emotion/src/data/preprocess_features.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def preprocess_features(feature_file, n_bins=None, min_n_instruments=3,
|
5 |
+
test_ratio=0.05, outlier_range=1.5, conditional=True,
|
6 |
+
use_labeled_only=True):
|
7 |
+
|
8 |
+
# Preprocess data
|
9 |
+
data = pd.read_csv(feature_file)
|
10 |
+
mapper = {"valence": "valence", "note_density_per_instrument": "arousal"}
|
11 |
+
data = data.rename(columns=mapper)
|
12 |
+
columns = data.columns.to_list()
|
13 |
+
|
14 |
+
# filter out ones with less instruments
|
15 |
+
data = data[data["n_instruments"] >= min_n_instruments]
|
16 |
+
# filter out ones with zero valence
|
17 |
+
data = data[data["valence"] != 0]
|
18 |
+
|
19 |
+
# filter out outliers
|
20 |
+
feature_labels = list(mapper.values())
|
21 |
+
outlier_indices = []
|
22 |
+
for label in feature_labels:
|
23 |
+
series = data[label]
|
24 |
+
q1 = series.quantile(0.25)
|
25 |
+
q3 = series.quantile(0.75)
|
26 |
+
iqr = q3 - q1
|
27 |
+
upper_limit = q3 + outlier_range * iqr
|
28 |
+
lower_limit = q1 - outlier_range * iqr
|
29 |
+
|
30 |
+
outlier_indices += series[series < lower_limit].index.to_list()
|
31 |
+
outlier_indices += series[series > upper_limit].index.to_list()
|
32 |
+
data.drop(outlier_indices, inplace=True)
|
33 |
+
|
34 |
+
# shift and scale features between -1 and 1
|
35 |
+
for label in feature_labels:
|
36 |
+
series = data[label]
|
37 |
+
min_ = series.min()
|
38 |
+
max_ = series.max()
|
39 |
+
|
40 |
+
data[label] = (data[label] - min_) / (max_ - min_) * 2 - 1
|
41 |
+
|
42 |
+
if n_bins is not None:
|
43 |
+
# digitize into bins using quantiles
|
44 |
+
quantile_indices = np.linspace(0, 1, n_bins+1)
|
45 |
+
for label in feature_labels:
|
46 |
+
|
47 |
+
# create token labels
|
48 |
+
if n_bins % 2 == 0:
|
49 |
+
bin_ids = list(range(-n_bins//2, 0)) + list(range(1, n_bins//2+1))
|
50 |
+
else:
|
51 |
+
bin_ids = list(range(-(n_bins-1)//2, (n_bins-1)//2 + 1))
|
52 |
+
token_labels = ["<{}{}>".format(label[0].upper(), bin_id) \
|
53 |
+
for bin_id in bin_ids]
|
54 |
+
# additional label for NaN (missing) values: <V>
|
55 |
+
token_labels.append(None) # to handle NaNs
|
56 |
+
|
57 |
+
series = data[label]
|
58 |
+
quantiles = [series.quantile(q) for q in quantile_indices]
|
59 |
+
quantiles[-1] += 1e-6
|
60 |
+
series = series.to_numpy()
|
61 |
+
series_digitized = np.digitize(series, quantiles)
|
62 |
+
series_tokenized = [token_labels[i-1] for i in series_digitized]
|
63 |
+
|
64 |
+
data[label] = series_tokenized
|
65 |
+
else:
|
66 |
+
# convert NaN into None
|
67 |
+
data = data.where(pd.notnull(data), None)
|
68 |
+
|
69 |
+
# Create train and test splits
|
70 |
+
matched = data[data["is_matched"]]
|
71 |
+
unmatched = data[~data["is_matched"]]
|
72 |
+
|
73 |
+
# reserve a portion of matched data for testing
|
74 |
+
matched = matched.sort_values("file")
|
75 |
+
matched = matched.reset_index(drop=True)
|
76 |
+
n_test_samples = round(len(matched) * test_ratio)
|
77 |
+
|
78 |
+
test_split = matched.loc[len(matched)-n_test_samples:len(matched)]
|
79 |
+
|
80 |
+
train_split = matched.loc[:len(matched)-n_test_samples]
|
81 |
+
|
82 |
+
if not use_labeled_only:
|
83 |
+
train_split = pd.concat([train_split, unmatched])
|
84 |
+
train_split = train_split.sort_values("file").reset_index(drop=True)
|
85 |
+
|
86 |
+
splits = [train_split, test_split]
|
87 |
+
|
88 |
+
# summarize
|
89 |
+
columns_to_drop = [col for col in columns if col not in ["file", "valence", "arousal"]]
|
90 |
+
if not conditional:
|
91 |
+
columns_to_drop += ["valence", "arousal"]
|
92 |
+
|
93 |
+
# filter data so all features are valid (not None = matched data)
|
94 |
+
for label in feature_labels:
|
95 |
+
# test split has to be identical across vanilla and conditional models
|
96 |
+
splits[1] = splits[1][~splits[1][label].isnull()]
|
97 |
+
|
98 |
+
# filter train split only for conditional models
|
99 |
+
if use_labeled_only:
|
100 |
+
splits[0] = splits[0][~splits[0][label].isnull()]
|
101 |
+
|
102 |
+
for i in range(len(splits)):
|
103 |
+
# summarize
|
104 |
+
splits[i] = splits[i].drop(columns=columns_to_drop, errors="ignore")
|
105 |
+
splits[i] = splits[i].to_dict("records")
|
106 |
+
|
107 |
+
return splits
|
midi_emotion/src/data/preprocess_pianorolls.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from data_processing import read_pianoroll, mid_to_bars, get_maps
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from tqdm import tqdm
|
6 |
+
from concurrent.futures import ProcessPoolExecutor
|
7 |
+
import time
|
8 |
+
from functools import partial
|
9 |
+
import os
|
10 |
+
|
11 |
+
""" Preprocessing Lakh MIDI pianoroll dataset.
|
12 |
+
Divides into bars. Encodes into tuples. Makes transposing easier. """
|
13 |
+
|
14 |
+
def run(f, my_iter):
|
15 |
+
with ProcessPoolExecutor(max_workers=16) as executor:
|
16 |
+
results = list(tqdm(executor.map(f, my_iter), total=len(my_iter)))
|
17 |
+
return results
|
18 |
+
|
19 |
+
def get_emotion_dict(path):
|
20 |
+
table = pd.read_csv(path)
|
21 |
+
table = table.to_dict(orient="records")
|
22 |
+
table = {item["path"].split("/")[-2]: \
|
23 |
+
{"valence": item["valence"], "energy": item["energy"], "tempo": item["tempo"]} \
|
24 |
+
for item in table}
|
25 |
+
return table
|
26 |
+
|
27 |
+
def process(pr_path, event_sym2idx):
|
28 |
+
time.sleep(0.001)
|
29 |
+
mid = read_pianoroll(pr_path)
|
30 |
+
|
31 |
+
bars = mid_to_bars(mid, event_sym2idx)
|
32 |
+
|
33 |
+
file_ = pr_path.split("/")[-1]
|
34 |
+
|
35 |
+
item_data = {
|
36 |
+
"file": file_,
|
37 |
+
"bars": bars,
|
38 |
+
}
|
39 |
+
|
40 |
+
return item_data
|
41 |
+
|
42 |
+
def main():
|
43 |
+
|
44 |
+
main_dir = "../../data_files/lpd_5"
|
45 |
+
input_dir = "../../data_files/lpd_5/lpd_5_full"
|
46 |
+
unique_pr_list_file = "../../data_files/features/pianoroll/unique_files.json"
|
47 |
+
|
48 |
+
output_dir = os.path.join(main_dir, "lpd_5_full_transposable")
|
49 |
+
|
50 |
+
os.makedirs(output_dir, exist_ok=True)
|
51 |
+
output_maps_path = os.path.join(main_dir, "maps.pt")
|
52 |
+
|
53 |
+
with open(unique_pr_list_file, "r") as f:
|
54 |
+
pr_paths = json.load(f)
|
55 |
+
|
56 |
+
pr_paths = [os.path.join(input_dir, pr_path[0], pr_path + ".npz") for pr_path in pr_paths]
|
57 |
+
|
58 |
+
maps = get_maps()
|
59 |
+
|
60 |
+
func = partial(process, event_sym2idx=maps["event2idx"])
|
61 |
+
|
62 |
+
os.makedirs(output_dir, exist_ok=True)
|
63 |
+
|
64 |
+
x = run(func, pr_paths)
|
65 |
+
x = [item for item in x if item["bars"] is not None]
|
66 |
+
for i in tqdm(range(len(x))):
|
67 |
+
for j in range(len(x[i]["bars"])):
|
68 |
+
x[i]["bars"][j] = torch.from_numpy(x[i]["bars"][j])
|
69 |
+
fname = x[i]["file"]
|
70 |
+
output_path = os.path.join(output_dir, fname.replace(".npz", ".pt"))
|
71 |
+
torch.save(x[i], output_path)
|
72 |
+
|
73 |
+
torch.save(maps, output_maps_path)
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
midi_emotion/src/generate.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
from copy import deepcopy
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import datetime
|
9 |
+
from tqdm import tqdm
|
10 |
+
from .utils import get_n_instruments
|
11 |
+
from .models.build_model import build_model
|
12 |
+
from .data.data_processing_reverse import ind_tensor_to_mid, ind_tensor_to_str
|
13 |
+
|
14 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
15 |
+
|
16 |
+
def chunks(lst, n):
|
17 |
+
"""Yield successive n-sized chunks from lst."""
|
18 |
+
for i in range(0, len(lst), n):
|
19 |
+
yield lst[i:i + n]
|
20 |
+
|
21 |
+
def generate(model, maps, device, out_dir, conditioning, short_filename=False,
|
22 |
+
penalty_coeff=0.5, discrete_conditions=None, continuous_conditions=None,
|
23 |
+
max_input_len=1024, amp=True, step=None,
|
24 |
+
gen_len=2048, temperatures=[1.2,1.2], top_k=-1,
|
25 |
+
top_p=0.7, debug=False, varying_condition=None, seed=-1,
|
26 |
+
verbose=False, primers=[["<START>"]], min_n_instruments=2):
|
27 |
+
|
28 |
+
if not debug:
|
29 |
+
os.makedirs(out_dir, exist_ok=True)
|
30 |
+
|
31 |
+
model = model.to(device)
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
assert len(temperatures) in (1, 2)
|
35 |
+
|
36 |
+
if varying_condition is not None:
|
37 |
+
batch_size = varying_condition[0].size(0)
|
38 |
+
else:
|
39 |
+
try:
|
40 |
+
continuous_conditions = torch.FloatTensor(continuous_conditions).to(device)
|
41 |
+
except:
|
42 |
+
continuous_conditions = None
|
43 |
+
if conditioning == "none":
|
44 |
+
batch_size = len(primers)
|
45 |
+
elif conditioning == "discrete_token":
|
46 |
+
assert discrete_conditions is not None
|
47 |
+
discrete_conditions_tensor = [[maps["tuple2idx"][symbol] for symbol in condition_sample] \
|
48 |
+
for condition_sample in discrete_conditions]
|
49 |
+
discrete_conditions_tensor = torch.LongTensor(discrete_conditions_tensor).t().to(device)
|
50 |
+
batch_size = discrete_conditions_tensor.size(1)
|
51 |
+
|
52 |
+
elif conditioning in ("continuous_token", "continuous_concat"):
|
53 |
+
batch_size = len(continuous_conditions)
|
54 |
+
|
55 |
+
# will be used to penalize repeats
|
56 |
+
repeat_counts = [0 for _ in range(batch_size)]
|
57 |
+
|
58 |
+
exclude_symbols = [symbol for symbol in maps["tuple2idx"].keys() if symbol[0] == "<"]
|
59 |
+
|
60 |
+
# will have generated symbols and indices
|
61 |
+
gen_song_tensor = torch.LongTensor([]).to(device)
|
62 |
+
|
63 |
+
if not isinstance(primers, list):
|
64 |
+
primers = [[primers]]
|
65 |
+
primer_inds = [[maps["tuple2idx"][symbol] for symbol in primer] \
|
66 |
+
for primer in primers]
|
67 |
+
|
68 |
+
gen_inds = torch.LongTensor(primer_inds)
|
69 |
+
|
70 |
+
null_conditions_tensor = torch.FloatTensor([np.nan, np.nan]).to(device)
|
71 |
+
|
72 |
+
if len(primers) == 1:
|
73 |
+
gen_inds = gen_inds.repeat(batch_size, 1)
|
74 |
+
null_conditions_tensor = null_conditions_tensor.repeat(batch_size, 1)
|
75 |
+
|
76 |
+
if conditioning == "continuous_token":
|
77 |
+
max_input_len -= 2
|
78 |
+
conditions_tensor = continuous_conditions
|
79 |
+
elif conditioning == "continuous_concat":
|
80 |
+
conditions_tensor = continuous_conditions
|
81 |
+
elif conditioning == "discrete_token":
|
82 |
+
max_input_len -= discrete_conditions_tensor.size(0)
|
83 |
+
conditions_tensor = null_conditions_tensor
|
84 |
+
else:
|
85 |
+
conditions_tensor = null_conditions_tensor
|
86 |
+
|
87 |
+
if varying_condition is not None:
|
88 |
+
varying_condition[0] = varying_condition[0].to(device)
|
89 |
+
varying_condition[1] = varying_condition[1].to(device)
|
90 |
+
|
91 |
+
gen_inds = gen_inds.t().to(device)
|
92 |
+
|
93 |
+
with torch.no_grad():
|
94 |
+
pbar = tqdm(total=gen_len, desc="Generating tokens", leave=True)
|
95 |
+
i = 0
|
96 |
+
while i < gen_len:
|
97 |
+
i += 1
|
98 |
+
pbar.update(1)
|
99 |
+
|
100 |
+
gen_song_tensor = torch.cat((gen_song_tensor, gen_inds), 0)
|
101 |
+
|
102 |
+
input_ = gen_song_tensor
|
103 |
+
if len(gen_song_tensor) > max_input_len:
|
104 |
+
input_ = input_[-max_input_len:, :]
|
105 |
+
|
106 |
+
if conditioning == "discrete_token":
|
107 |
+
# concat with conditions
|
108 |
+
input_ = torch.cat((discrete_conditions_tensor, input_), 0)
|
109 |
+
|
110 |
+
# INTERPOLATED CONDITIONS
|
111 |
+
if varying_condition is not None:
|
112 |
+
valences = varying_condition[0][:, i-1]
|
113 |
+
arousals = varying_condition[1][:, i-1]
|
114 |
+
conditions_tensor = torch.cat([valences[:, None], arousals[:, None]], dim=-1)
|
115 |
+
|
116 |
+
# Run model
|
117 |
+
with torch.cuda.amp.autocast(enabled=amp):
|
118 |
+
input_ = input_.t()
|
119 |
+
output = model(input_, conditions_tensor)
|
120 |
+
output = output.permute((1, 0, 2))
|
121 |
+
|
122 |
+
# Process output, get predicted token
|
123 |
+
output = output[-1, :, :] # Select last timestep
|
124 |
+
output[output != output] = 0 # zeroing nans
|
125 |
+
|
126 |
+
if torch.all(output == 0) and verbose:
|
127 |
+
# if everything becomes zero
|
128 |
+
print("All predictions were NaN during generation")
|
129 |
+
output = torch.ones(output.shape).to(device)
|
130 |
+
|
131 |
+
# exclude certain symbols
|
132 |
+
for symbol_exclude in exclude_symbols:
|
133 |
+
try:
|
134 |
+
idx_exclude = maps["tuple2idx"][symbol_exclude]
|
135 |
+
output[:, idx_exclude] = -float("inf")
|
136 |
+
except:
|
137 |
+
pass
|
138 |
+
|
139 |
+
effective_temps = []
|
140 |
+
for j in range(batch_size):
|
141 |
+
gen_idx = gen_inds[0, j].item()
|
142 |
+
gen_tuple = maps["idx2tuple"][gen_idx]
|
143 |
+
effective_temp = temperatures[1]
|
144 |
+
if isinstance(gen_tuple, tuple):
|
145 |
+
gen_event = maps["idx2event"][gen_tuple[0]]
|
146 |
+
if "TIMESHIFT" in gen_event:
|
147 |
+
# switch from rest temperature to note temperature
|
148 |
+
effective_temp = temperatures[0]
|
149 |
+
effective_temps.append(effective_temp)
|
150 |
+
|
151 |
+
temp_tensor = torch.Tensor([effective_temps]).to(device)
|
152 |
+
|
153 |
+
output = F.log_softmax(output, dim=-1)
|
154 |
+
|
155 |
+
# Add repeat penalty to temperature
|
156 |
+
if penalty_coeff > 0:
|
157 |
+
repeat_counts_array = torch.Tensor(repeat_counts).to(device)
|
158 |
+
temp_multiplier = torch.maximum(torch.zeros_like(repeat_counts_array, device=device),
|
159 |
+
torch.log((repeat_counts_array+1)/4)*penalty_coeff)
|
160 |
+
repeat_penalties = temp_multiplier * temp_tensor
|
161 |
+
temp_tensor += repeat_penalties
|
162 |
+
|
163 |
+
# Apply temperature
|
164 |
+
output /= temp_tensor.t()
|
165 |
+
|
166 |
+
# top-k
|
167 |
+
if top_k <= 0 or top_k > output.size(-1):
|
168 |
+
top_k_eff = output.size(-1)
|
169 |
+
else:
|
170 |
+
top_k_eff = top_k
|
171 |
+
output, top_inds = torch.topk(output, top_k_eff)
|
172 |
+
|
173 |
+
# top-p
|
174 |
+
if top_p > 0 and top_p < 1:
|
175 |
+
cumulative_probs = torch.cumsum(F.softmax(output, dim=-1), dim=-1)
|
176 |
+
remove_inds = cumulative_probs > top_p
|
177 |
+
remove_inds[:, 0] = False # at least keep top value
|
178 |
+
output[remove_inds] = -float("inf")
|
179 |
+
|
180 |
+
output = F.softmax(output, dim=-1)
|
181 |
+
|
182 |
+
# Sample from probabilities
|
183 |
+
inds_sampled = torch.multinomial(output, 1, replacement=True)
|
184 |
+
gen_inds = top_inds.gather(1, inds_sampled).t()
|
185 |
+
|
186 |
+
# Update repeat counts
|
187 |
+
num_choices = torch.sum((output > 0).int(), -1)
|
188 |
+
for j in range(batch_size):
|
189 |
+
if num_choices[j] <= 2: repeat_counts[j] += 1
|
190 |
+
else: repeat_counts[j] = repeat_counts[j] // 2
|
191 |
+
|
192 |
+
pbar.close()
|
193 |
+
|
194 |
+
# Convert to midi and save
|
195 |
+
print("\nConverting to MIDI...")
|
196 |
+
|
197 |
+
# If there are less than n instruments, repeat generation for specific condition
|
198 |
+
redo_primers, redo_discrete_conditions, redo_continuous_conditions = [], [], []
|
199 |
+
for i in range(gen_song_tensor.size(-1)):
|
200 |
+
if short_filename:
|
201 |
+
out_file_path = f"{i}"
|
202 |
+
else:
|
203 |
+
if step is None:
|
204 |
+
now = datetime.datetime.now()
|
205 |
+
out_file_path = now.strftime("%Y_%m_%d_%H_%M_%S")
|
206 |
+
else:
|
207 |
+
out_file_path = step
|
208 |
+
|
209 |
+
out_file_path += f"_{i}"
|
210 |
+
|
211 |
+
if seed > 0:
|
212 |
+
out_file_path += f"_s{seed}"
|
213 |
+
|
214 |
+
if continuous_conditions is not None:
|
215 |
+
condition = continuous_conditions[i, :].tolist()
|
216 |
+
# convert to string
|
217 |
+
condition = [str(round(c, 2)).replace(".", "") for c in condition]
|
218 |
+
out_file_path += f"_V{condition[0]}_A{condition[1]}"
|
219 |
+
|
220 |
+
out_file_path += ".mid"
|
221 |
+
out_path_mid = os.path.join(out_dir, out_file_path)
|
222 |
+
|
223 |
+
symbols = ind_tensor_to_str(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"])
|
224 |
+
n_instruments = get_n_instruments(symbols)
|
225 |
+
|
226 |
+
if n_instruments >= min_n_instruments:
|
227 |
+
mid = ind_tensor_to_mid(gen_song_tensor[:, i], maps["idx2tuple"], maps["idx2event"], verbose=False)
|
228 |
+
out_path_txt = "txt_" + out_file_path.replace(".mid", ".txt")
|
229 |
+
out_path_txt = os.path.join(out_dir, out_path_txt)
|
230 |
+
out_path_inds = "inds_" + out_file_path.replace(".mid", ".pt")
|
231 |
+
out_path_inds = os.path.join(out_dir, out_path_inds)
|
232 |
+
|
233 |
+
if not debug:
|
234 |
+
mid.write(out_path_mid)
|
235 |
+
if verbose:
|
236 |
+
print(f"Saved to {out_path_mid}")
|
237 |
+
else:
|
238 |
+
print(f"Only has {n_instruments} instruments, not saving.")
|
239 |
+
if conditioning == "none":
|
240 |
+
redo_primers.append(primers[i])
|
241 |
+
redo_discrete_conditions = None
|
242 |
+
redo_continuous_conditions = None
|
243 |
+
elif conditioning == "discrete_token":
|
244 |
+
redo_discrete_conditions.append(discrete_conditions[i])
|
245 |
+
redo_continuous_conditions = None
|
246 |
+
redo_primers = primers
|
247 |
+
else:
|
248 |
+
redo_discrete_conditions = None
|
249 |
+
redo_continuous_conditions.append(continuous_conditions[i, :].tolist())
|
250 |
+
redo_primers = primers
|
251 |
+
|
252 |
+
return redo_primers, redo_discrete_conditions, redo_continuous_conditions
|
253 |
+
|
254 |
+
|
255 |
+
if __name__ == '__main__':
|
256 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
257 |
+
code_model_dir = os.path.abspath(os.path.join(script_dir, 'model'))
|
258 |
+
code_utils_dir = os.path.join(code_model_dir, 'utils')
|
259 |
+
sys.path.extend([code_model_dir, code_utils_dir])
|
260 |
+
|
261 |
+
parser = ArgumentParser()
|
262 |
+
|
263 |
+
parser.add_argument('--model_dir', type=str, help='Directory with model', required=True)
|
264 |
+
parser.add_argument('--no_cuda', action='store_true', help="Use CPU")
|
265 |
+
parser.add_argument('--num_runs', type=int, help='Number of runs', default=1)
|
266 |
+
parser.add_argument('--gen_len', type=int, help='Max generation len', default=4096)
|
267 |
+
parser.add_argument('--max_input_len', type=int, help='Max input len', default=1216)
|
268 |
+
parser.add_argument('--temp', type=float, nargs='+', help='Generation temperature', default=[1.2, 1.2])
|
269 |
+
parser.add_argument('--topk', type=int, help='Top-k sampling', default=-1)
|
270 |
+
parser.add_argument('--topp', type=float, help='Top-p sampling', default=0.7)
|
271 |
+
parser.add_argument('--debug', action='store_true', help="Do not save anything")
|
272 |
+
parser.add_argument('--seed', type=int, default=0, help="Random seed")
|
273 |
+
parser.add_argument('--no_amp', action='store_true', help="Disable automatic mixed precision")
|
274 |
+
parser.add_argument("--conditioning", type=str, required=True,
|
275 |
+
choices=["none", "discrete_token", "continuous_token",
|
276 |
+
"continuous_concat"], help='Conditioning type')
|
277 |
+
parser.add_argument('--penalty_coeff', type=float, default=0.5,
|
278 |
+
help="Coefficient for penalizing repeating notes")
|
279 |
+
parser.add_argument("--quiet", action='store_true', help="Not verbose")
|
280 |
+
parser.add_argument("--short_filename", action='store_true')
|
281 |
+
parser.add_argument('--batch_size', type=int, help='Batch size', default=4)
|
282 |
+
parser.add_argument('--min_n_instruments', type=int, help='Minimum number of instruments', default=1)
|
283 |
+
parser.add_argument('--valence', type=float, help='Conditioning valence value', default=[None], nargs='+')
|
284 |
+
parser.add_argument('--arousal', type=float, help='Conditioning arousal value', default=[None], nargs='+')
|
285 |
+
parser.add_argument("--batch_gen_dir", type=str, default="")
|
286 |
+
|
287 |
+
args = parser.parse_args()
|
288 |
+
|
289 |
+
assert len(args.valence) == len(args.arousal), "Lengths of valence and arousal must be equal"
|
290 |
+
assert (args.conditioning == "none") == (args.valence == [None] or args.arousal == [None]), \
|
291 |
+
"If conditioning is used, specify valence and arousal; if not, don't"
|
292 |
+
|
293 |
+
if args.seed > 0:
|
294 |
+
torch.manual_seed(args.seed)
|
295 |
+
torch.cuda.manual_seed(args.seed)
|
296 |
+
|
297 |
+
main_output_dir = "../output"
|
298 |
+
assert os.path.exists(os.path.join(main_output_dir, args.model_dir))
|
299 |
+
midi_output_dir = os.path.join(main_output_dir, args.model_dir, "generations", "inference")
|
300 |
+
|
301 |
+
new_dir = ""
|
302 |
+
if args.batch_gen_dir != "":
|
303 |
+
new_dir = new_dir + "_" + args.batch_gen_dir
|
304 |
+
if new_dir != "":
|
305 |
+
midi_output_dir = os.path.join(midi_output_dir, new_dir)
|
306 |
+
if not args.debug:
|
307 |
+
os.makedirs(midi_output_dir, exist_ok=True)
|
308 |
+
|
309 |
+
model_fp = os.path.join(main_output_dir, args.model_dir, 'model.pt')
|
310 |
+
mappings_fp = os.path.join(main_output_dir, args.model_dir, 'mappings.pt')
|
311 |
+
config_fp = os.path.join(main_output_dir, args.model_dir, 'model_config.pt')
|
312 |
+
|
313 |
+
if os.path.exists(mappings_fp):
|
314 |
+
maps = torch.load(mappings_fp)
|
315 |
+
else:
|
316 |
+
raise ValueError("Mapping file not found.")
|
317 |
+
|
318 |
+
start_symbol = "<START>"
|
319 |
+
n_emotion_bins = 5
|
320 |
+
valence_symbols, arousal_symbols = [], []
|
321 |
+
|
322 |
+
emotion_bins = np.linspace(-1-1e-12, 1+1e-12, num=n_emotion_bins+1)
|
323 |
+
if n_emotion_bins % 2 == 0:
|
324 |
+
bin_ids = list(range(-n_emotion_bins//2, 0)) + list(range(1, n_emotion_bins//2+1))
|
325 |
+
else:
|
326 |
+
bin_ids = list(range(-(n_emotion_bins-1)//2, (n_emotion_bins-1)//2 + 1))
|
327 |
+
|
328 |
+
for bin_id in bin_ids:
|
329 |
+
valence_symbols.append(f"<V{bin_id}>")
|
330 |
+
arousal_symbols.append(f"<A{bin_id}>")
|
331 |
+
|
332 |
+
device = torch.device('cuda' if not args.no_cuda and torch.cuda.is_available() else 'cpu')
|
333 |
+
|
334 |
+
verbose = not args.quiet
|
335 |
+
if verbose:
|
336 |
+
if device == torch.device("cuda"):
|
337 |
+
print("Using GPU")
|
338 |
+
else:
|
339 |
+
print("Using CPU")
|
340 |
+
|
341 |
+
# Load model
|
342 |
+
config = torch.load(config_fp)
|
343 |
+
model, _ = build_model(None, load_config_dict=config)
|
344 |
+
model = model.to(device)
|
345 |
+
if os.path.exists(model_fp):
|
346 |
+
model.load_state_dict(torch.load(model_fp, map_location=device))
|
347 |
+
elif os.path.exists(model_fp.replace("best_", "")):
|
348 |
+
model.load_state_dict(torch.load(model_fp.replace("best_", ""), map_location=device))
|
349 |
+
else:
|
350 |
+
raise ValueError("Model not found")
|
351 |
+
|
352 |
+
# Process conditions
|
353 |
+
null_condition = torch.FloatTensor([np.nan, np.nan]).to(device)
|
354 |
+
|
355 |
+
varying_condition = None
|
356 |
+
label_conditions = None
|
357 |
+
|
358 |
+
conditions = []
|
359 |
+
if args.valence == [None]:
|
360 |
+
conditions = None
|
361 |
+
elif len(args.valence) == 1:
|
362 |
+
for _ in range(args.batch_size):
|
363 |
+
conditions.append([args.valence[0], args.arousal[0]])
|
364 |
+
else:
|
365 |
+
for i in range(len(args.valence)):
|
366 |
+
conditions.append([args.valence[i], args.arousal[i]])
|
367 |
+
|
368 |
+
primers = [["<START>"]]
|
369 |
+
continuous_conditions = conditions
|
370 |
+
if args.conditioning == "discrete_token":
|
371 |
+
|
372 |
+
discrete_conditions = []
|
373 |
+
for condition in conditions:
|
374 |
+
valence_val, arousal_val = condition
|
375 |
+
valence_symbol = valence_symbols[np.searchsorted(
|
376 |
+
emotion_bins, valence_val, side="right") - 1]
|
377 |
+
arousal_symbol = arousal_symbols[np.searchsorted(
|
378 |
+
emotion_bins, arousal_val, side="right") - 1]
|
379 |
+
discrete_conditions.append([valence_symbol, arousal_symbol])
|
380 |
+
|
381 |
+
conditions = null_condition
|
382 |
+
|
383 |
+
elif args.conditioning == "none":
|
384 |
+
discrete_conditions = None
|
385 |
+
primers = [["<START>"] for _ in range(args.batch_size)]
|
386 |
+
|
387 |
+
elif args.conditioning in ["continuous_token", "continuous_concat"]:
|
388 |
+
primers = [["<START>"]]
|
389 |
+
discrete_conditions = None
|
390 |
+
|
391 |
+
for i in range(args.num_runs):
|
392 |
+
primers_run = deepcopy(primers)
|
393 |
+
discrete_conditions_run = deepcopy(discrete_conditions)
|
394 |
+
continuous_conditions_run = deepcopy(continuous_conditions)
|
395 |
+
while not (primers_run == [] or discrete_conditions_run == [] or continuous_conditions_run == []):
|
396 |
+
primers_run, discrete_conditions_run, continuous_conditions_run = generate(
|
397 |
+
model, maps, device,
|
398 |
+
midi_output_dir, args.conditioning, discrete_conditions=discrete_conditions_run,
|
399 |
+
min_n_instruments=args.min_n_instruments,continuous_conditions=continuous_conditions_run,
|
400 |
+
penalty_coeff=args.penalty_coeff, short_filename=args.short_filename, top_p=args.topp,
|
401 |
+
gen_len=args.gen_len, max_input_len=args.max_input_len,
|
402 |
+
amp=not args.no_amp, primers=primers_run, temperatures=args.temp, top_k=args.topk,
|
403 |
+
debug=args.debug, verbose=not args.quiet, seed=args.seed)
|
midi_emotion/src/models/build_model.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
def set_dropout(model, rate):
|
3 |
+
for name, child in model.named_children():
|
4 |
+
if isinstance(child, nn.Dropout):
|
5 |
+
child.p = rate
|
6 |
+
set_dropout(child, rate)
|
7 |
+
return model
|
8 |
+
|
9 |
+
def build_model(args, load_config_dict=None):
|
10 |
+
|
11 |
+
if load_config_dict is not None:
|
12 |
+
args = load_config_dict
|
13 |
+
|
14 |
+
config = {
|
15 |
+
"vocab_size": args["vocab_size"],
|
16 |
+
"num_layer": args["n_layer"],
|
17 |
+
"num_head": args["n_head"],
|
18 |
+
"embedding_dim": args["d_model"],
|
19 |
+
"d_inner": args["d_inner"],
|
20 |
+
"dropout": args["dropout"],
|
21 |
+
"d_condition": args["d_condition"],
|
22 |
+
"max_seq": 2048,
|
23 |
+
"pad_token": 0,
|
24 |
+
}
|
25 |
+
|
26 |
+
if not "regression" in list(args.keys()):
|
27 |
+
args["regression"] = False
|
28 |
+
|
29 |
+
if args["regression"]:
|
30 |
+
config["output_size"] = 2
|
31 |
+
from models.music_regression \
|
32 |
+
import MusicRegression as MusicTransformer
|
33 |
+
|
34 |
+
elif args["conditioning"] == "continuous_token":
|
35 |
+
from models.music_continuous_token \
|
36 |
+
import MusicTransformerContinuousToken as MusicTransformer
|
37 |
+
del config["d_condition"]
|
38 |
+
else:
|
39 |
+
from .music_multi \
|
40 |
+
import MusicTransformerMulti as MusicTransformer
|
41 |
+
|
42 |
+
model = MusicTransformer(**config)
|
43 |
+
if load_config_dict is not None and args is not None:
|
44 |
+
if args["overwrite_dropout"]:
|
45 |
+
model = set_dropout(model, args["dropout"])
|
46 |
+
rate = args["dropout"]
|
47 |
+
print(f"Dropout rate changed to {rate}")
|
48 |
+
return model, args
|
midi_emotion/src/models/music_continuous_token.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math as m
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
"""
|
8 |
+
MUSIC TRANSFORMER
|
9 |
+
|
10 |
+
CONTINUOUS TOKEN
|
11 |
+
Takes continuous conditions separately, embeds them and
|
12 |
+
then inserts them before the embedded sequence
|
13 |
+
Hence, they are like continuous tokens
|
14 |
+
"""
|
15 |
+
|
16 |
+
def generate_mask(x, pad_token=None, batch_first=True):
|
17 |
+
|
18 |
+
batch_size = x.size(0)
|
19 |
+
seq_len = x.size(1)
|
20 |
+
|
21 |
+
subsequent_mask = torch.logical_not(torch.triu(torch.ones(seq_len, seq_len, device=x.device)).t()).unsqueeze(
|
22 |
+
-1).repeat(1, 1, batch_size)
|
23 |
+
pad_mask = x == pad_token
|
24 |
+
if batch_first:
|
25 |
+
pad_mask = pad_mask.t()
|
26 |
+
mask = torch.logical_or(subsequent_mask, pad_mask)
|
27 |
+
if batch_first:
|
28 |
+
mask = mask.permute(2, 0, 1)
|
29 |
+
return mask
|
30 |
+
|
31 |
+
|
32 |
+
class MusicTransformerContinuousToken(torch.nn.Module):
|
33 |
+
def __init__(self, embedding_dim=None, d_inner=None, vocab_size=None, num_layer=None, num_head=None,
|
34 |
+
max_seq=None, dropout=None, pad_token=None, has_start_token=True, n_conditions=2,
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.max_seq = max_seq
|
39 |
+
self.num_layer = num_layer
|
40 |
+
self.embedding_dim = embedding_dim
|
41 |
+
self.vocab_size = vocab_size
|
42 |
+
|
43 |
+
self.pad_token = pad_token
|
44 |
+
self.has_start_token = has_start_token
|
45 |
+
self.n_conditions = n_conditions
|
46 |
+
|
47 |
+
|
48 |
+
self.embedding = torch.nn.Embedding(num_embeddings=vocab_size,
|
49 |
+
embedding_dim=self.embedding_dim,
|
50 |
+
padding_idx=pad_token)
|
51 |
+
|
52 |
+
# two vectors for two types of emotion (valence, energy/tempo)
|
53 |
+
# just like token embedding
|
54 |
+
self.fc_condition = torch.nn.ModuleList([torch.nn.Linear(1, self.embedding_dim) \
|
55 |
+
for _ in range(self.n_conditions)])
|
56 |
+
|
57 |
+
self.pos_encoding = DynamicPositionEmbedding(self.embedding_dim, max_seq=max_seq)
|
58 |
+
|
59 |
+
self.enc_layers = torch.nn.ModuleList(
|
60 |
+
[EncoderLayer(embedding_dim, d_inner, dropout, h=num_head, additional=False, max_seq=max_seq)
|
61 |
+
for _ in range(num_layer)])
|
62 |
+
self.dropout = torch.nn.Dropout(dropout)
|
63 |
+
|
64 |
+
self.fc = torch.nn.Linear(self.embedding_dim, self.vocab_size)
|
65 |
+
|
66 |
+
self.init_weights()
|
67 |
+
|
68 |
+
def init_weights(self):
|
69 |
+
initrange = 0.1
|
70 |
+
self.embedding.weight.data.uniform_(-initrange, initrange)
|
71 |
+
self.fc.bias.data.zero_()
|
72 |
+
self.fc.weight.data.uniform_(-initrange, initrange)
|
73 |
+
for i in range(len(self.fc_condition)):
|
74 |
+
self.fc_condition[i].weight.data.uniform_(-initrange, initrange)
|
75 |
+
self.fc_condition[i].bias.data.zero_()
|
76 |
+
|
77 |
+
def forward(self, x_tokens, condition):
|
78 |
+
# takes batch first
|
79 |
+
# x.shape = [batch_size, sequence_length]
|
80 |
+
|
81 |
+
# embed input
|
82 |
+
x = self.embedding(x_tokens) # (batch_size, input_seq_len, d_model)
|
83 |
+
x *= math.sqrt(self.embedding_dim)
|
84 |
+
|
85 |
+
# pad input sequence to represent continuous emotion vectors
|
86 |
+
x_tokens_padded = torch.nn.functional.pad(x_tokens, (condition.size(-1), 0), value=-1)
|
87 |
+
mask = generate_mask(x_tokens_padded, self.pad_token)
|
88 |
+
|
89 |
+
# embed conditions one by one, using different linear layers,
|
90 |
+
# just like token embedding
|
91 |
+
c = []
|
92 |
+
for i in range(self.n_conditions):
|
93 |
+
c.append(self.fc_condition[i](condition[:, i, None]))
|
94 |
+
c = torch.stack(c, dim=1)
|
95 |
+
|
96 |
+
# concatenate with conditions
|
97 |
+
x = torch.cat((c, x), dim=1)
|
98 |
+
|
99 |
+
x = self.pos_encoding(x)
|
100 |
+
x = self.dropout(x)
|
101 |
+
for i in range(len(self.enc_layers)):
|
102 |
+
x = self.enc_layers[i](x, mask)
|
103 |
+
|
104 |
+
x = self.fc(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
class EncoderLayer(torch.nn.Module):
|
108 |
+
def __init__(self, d_model, d_inner, rate=0.1, h=16, additional=False, max_seq=2048):
|
109 |
+
super(EncoderLayer, self).__init__()
|
110 |
+
|
111 |
+
self.d_model = d_model
|
112 |
+
self.rga = RelativeGlobalAttention(h=h, d=d_model, max_seq=max_seq, add_emb=additional)
|
113 |
+
|
114 |
+
self.FFN_pre = torch.nn.Linear(self.d_model, d_inner)
|
115 |
+
self.FFN_suf = torch.nn.Linear(d_inner, self.d_model)
|
116 |
+
|
117 |
+
self.layernorm1 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
118 |
+
self.layernorm2 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
119 |
+
|
120 |
+
self.dropout1 = torch.nn.Dropout(rate)
|
121 |
+
self.dropout2 = torch.nn.Dropout(rate)
|
122 |
+
|
123 |
+
def forward(self, x, mask=None, **kwargs):
|
124 |
+
attn_out = self.rga([x,x,x], mask)
|
125 |
+
attn_out = self.dropout1(attn_out)
|
126 |
+
out1 = self.layernorm1(attn_out+x)
|
127 |
+
|
128 |
+
ffn_out = F.relu(self.FFN_pre(out1))
|
129 |
+
ffn_out = self.FFN_suf(ffn_out)
|
130 |
+
ffn_out = self.dropout2(ffn_out)
|
131 |
+
out2 = self.layernorm2(out1+ffn_out)
|
132 |
+
return out2
|
133 |
+
|
134 |
+
def sinusoid(max_seq, embedding_dim):
|
135 |
+
return np.array([[
|
136 |
+
[
|
137 |
+
m.sin(
|
138 |
+
pos * m.exp(-m.log(10000) * i / embedding_dim) * m.exp(
|
139 |
+
m.log(10000) / embedding_dim * (i % 2)) + 0.5 * m.pi * (i % 2)
|
140 |
+
)
|
141 |
+
for i in range(embedding_dim)
|
142 |
+
]
|
143 |
+
for pos in range(max_seq)
|
144 |
+
]])
|
145 |
+
|
146 |
+
def sinusoid2(max_seq, embedding_dim):
|
147 |
+
pos_emb = np.zeros((1, max_seq, embedding_dim))
|
148 |
+
for index in range(0, embedding_dim, 2):
|
149 |
+
pos_emb[0, :, index] = np.array([m.sin(pos/10000**(index/embedding_dim))
|
150 |
+
for pos in range(max_seq)])
|
151 |
+
pos_emb[0, :, index+1] = np.array([m.cos(pos/10000**(index/embedding_dim))
|
152 |
+
for pos in range(max_seq)])
|
153 |
+
return pos_emb
|
154 |
+
|
155 |
+
|
156 |
+
class DynamicPositionEmbedding(torch.nn.Module):
|
157 |
+
def __init__(self, embedding_dim, max_seq=2048):
|
158 |
+
super().__init__()
|
159 |
+
self.device = torch.device("cpu")
|
160 |
+
self.dtype = torch.float32
|
161 |
+
embed_sinusoid_list = sinusoid(max_seq, embedding_dim)
|
162 |
+
|
163 |
+
self.positional_embedding = torch.from_numpy(embed_sinusoid_list).to(
|
164 |
+
self.device, dtype=self.dtype)
|
165 |
+
|
166 |
+
def forward(self, x):
|
167 |
+
if x.device != self.device or x.dtype != self.dtype:
|
168 |
+
self.positional_embedding = self.positional_embedding.to(x.device, dtype=x.dtype)
|
169 |
+
x += self.positional_embedding[:, :x.size(1), :]
|
170 |
+
return x
|
171 |
+
|
172 |
+
|
173 |
+
class RelativeGlobalAttention(torch.nn.Module):
|
174 |
+
"""
|
175 |
+
from Music Transformer ( Huang et al, 2018 )
|
176 |
+
[paper link](https://arxiv.org/pdf/1809.04281.pdf)
|
177 |
+
"""
|
178 |
+
def __init__(self, h=4, d=256, add_emb=False, max_seq=2048, **kwargs):
|
179 |
+
super().__init__()
|
180 |
+
self.len_k = None
|
181 |
+
self.max_seq = max_seq
|
182 |
+
self.E = None
|
183 |
+
self.h = h
|
184 |
+
self.d = d
|
185 |
+
self.dh = d // h
|
186 |
+
self.Wq = torch.nn.Linear(self.d, self.d)
|
187 |
+
self.Wk = torch.nn.Linear(self.d, self.d)
|
188 |
+
self.Wv = torch.nn.Linear(self.d, self.d)
|
189 |
+
self.fc = torch.nn.Linear(d, d)
|
190 |
+
self.additional = add_emb
|
191 |
+
self.E = torch.nn.Parameter(torch.randn([self.max_seq, int(self.dh)]))
|
192 |
+
if self.additional:
|
193 |
+
self.Radd = None
|
194 |
+
|
195 |
+
def forward(self, inputs, mask=None, **kwargs):
|
196 |
+
"""
|
197 |
+
:param inputs: a list of tensors. i.e) [Q, K, V]
|
198 |
+
:param mask: mask tensor
|
199 |
+
:param kwargs:
|
200 |
+
:return: final tensor ( output of attention )
|
201 |
+
"""
|
202 |
+
q = inputs[0]
|
203 |
+
q = self.Wq(q)
|
204 |
+
q = torch.reshape(q, (q.size(0), q.size(1), self.h, -1))
|
205 |
+
q = q.permute(0, 2, 1, 3) # batch, h, seq, dh
|
206 |
+
|
207 |
+
k = inputs[1]
|
208 |
+
k = self.Wk(k)
|
209 |
+
k = torch.reshape(k, (k.size(0), k.size(1), self.h, -1))
|
210 |
+
k = k.permute(0, 2, 1, 3)
|
211 |
+
|
212 |
+
v = inputs[2]
|
213 |
+
v = self.Wv(v)
|
214 |
+
v = torch.reshape(v, (v.size(0), v.size(1), self.h, -1))
|
215 |
+
v = v.permute(0, 2, 1, 3)
|
216 |
+
|
217 |
+
self.len_k = k.size(2)
|
218 |
+
self.len_q = q.size(2)
|
219 |
+
|
220 |
+
E = self._get_left_embedding(self.len_q, self.len_k).to(q.device)
|
221 |
+
QE = torch.einsum('bhld,md->bhlm', [q, E])
|
222 |
+
QE = self._qe_masking(QE)
|
223 |
+
Srel = self._skewing(QE)
|
224 |
+
|
225 |
+
Kt = k.permute(0, 1, 3, 2)
|
226 |
+
QKt = torch.matmul(q, Kt)
|
227 |
+
logits = QKt + Srel
|
228 |
+
logits = logits / math.sqrt(self.dh)
|
229 |
+
|
230 |
+
if mask is not None:
|
231 |
+
mask = mask.unsqueeze(1)
|
232 |
+
new_mask = torch.zeros_like(mask, dtype=torch.float)
|
233 |
+
new_mask.masked_fill_(mask, float("-inf"))
|
234 |
+
mask = new_mask
|
235 |
+
logits += mask
|
236 |
+
|
237 |
+
attention_weights = F.softmax(logits, -1)
|
238 |
+
attention = torch.matmul(attention_weights, v)
|
239 |
+
|
240 |
+
out = attention.permute(0, 2, 1, 3)
|
241 |
+
out = torch.reshape(out, (out.size(0), -1, self.d))
|
242 |
+
|
243 |
+
out = self.fc(out)
|
244 |
+
return out
|
245 |
+
|
246 |
+
def _get_left_embedding(self, len_q, len_k):
|
247 |
+
starting_point = max(0,self.max_seq-len_q)
|
248 |
+
e = self.E[starting_point:,:]
|
249 |
+
return e
|
250 |
+
|
251 |
+
def _skewing(self, tensor: torch.Tensor):
|
252 |
+
padded = F.pad(tensor, [1, 0, 0, 0, 0, 0, 0, 0])
|
253 |
+
reshaped = torch.reshape(padded, shape=[padded.size(0), padded.size(1), padded.size(-1), padded.size(-2)])
|
254 |
+
Srel = reshaped[:, :, 1:, :]
|
255 |
+
if self.len_k > self.len_q:
|
256 |
+
Srel = F.pad(Srel, [0, 0, 0, 0, 0, 0, 0, self.len_k-self.len_q])
|
257 |
+
elif self.len_k < self.len_q:
|
258 |
+
Srel = Srel[:, :, :, :self.len_k]
|
259 |
+
|
260 |
+
return Srel
|
261 |
+
|
262 |
+
@staticmethod
|
263 |
+
def _qe_masking(qe):
|
264 |
+
mask = sequence_mask(
|
265 |
+
torch.arange(qe.size()[-1] - 1, qe.size()[-1] - qe.size()[-2] - 1, -1).to(qe.device),
|
266 |
+
qe.size()[-1])
|
267 |
+
mask = ~mask.to(mask.device)
|
268 |
+
return mask.to(qe.dtype) * qe
|
269 |
+
|
270 |
+
def sequence_mask(length, max_length=None):
|
271 |
+
"""Tensorflow의 sequence_mask를 구현"""
|
272 |
+
if max_length is None:
|
273 |
+
max_length = length.max()
|
274 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
275 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
midi_emotion/src/models/music_multi.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math as m
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import sys
|
7 |
+
|
8 |
+
sys.path.append("..")
|
9 |
+
|
10 |
+
|
11 |
+
"""
|
12 |
+
MUSIC TRANSFORMER
|
13 |
+
Multi use, can handle following conditioning methods:
|
14 |
+
none (vanilla), continuous_concat, discrete_token
|
15 |
+
|
16 |
+
CONTINUOUS CONCAT
|
17 |
+
Takes continuous conditions as a vector of length 2, embeds it and
|
18 |
+
then concatenates it with every input token
|
19 |
+
|
20 |
+
If d_condition <= 0, it become VANILLA music transformer
|
21 |
+
If d_condition <= 0 and discrete condition tokens are fed,
|
22 |
+
it becomes "DISCRETE TOKEN" music transformer
|
23 |
+
"""
|
24 |
+
|
25 |
+
def generate_mask(x, pad_token=None, batch_first=True):
|
26 |
+
|
27 |
+
batch_size = x.size(0)
|
28 |
+
seq_len = x.size(1)
|
29 |
+
|
30 |
+
subsequent_mask = torch.logical_not(torch.triu(torch.ones(seq_len, seq_len, device=x.device)).t()).unsqueeze(
|
31 |
+
-1).repeat(1, 1, batch_size)
|
32 |
+
pad_mask = x == pad_token
|
33 |
+
if batch_first:
|
34 |
+
pad_mask = pad_mask.t()
|
35 |
+
mask = torch.logical_or(subsequent_mask, pad_mask)
|
36 |
+
if batch_first:
|
37 |
+
mask = mask.permute(2, 0, 1)
|
38 |
+
return mask
|
39 |
+
|
40 |
+
|
41 |
+
class MusicTransformerMulti(torch.nn.Module):
|
42 |
+
def __init__(self, embedding_dim=None, d_inner=None, d_condition=None, vocab_size=None, num_layer=None, num_head=None,
|
43 |
+
max_seq=None, dropout=None, pad_token=None,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
self.max_seq = max_seq
|
48 |
+
self.num_layer = num_layer
|
49 |
+
self.embedding_dim = embedding_dim
|
50 |
+
self.vocab_size = vocab_size
|
51 |
+
|
52 |
+
self.pad_token = pad_token
|
53 |
+
|
54 |
+
d_condition = 0 if d_condition < 0 else d_condition
|
55 |
+
self.d_condition = d_condition
|
56 |
+
|
57 |
+
self.embedding = torch.nn.Embedding(num_embeddings=vocab_size,
|
58 |
+
embedding_dim=self.embedding_dim-self.d_condition,
|
59 |
+
padding_idx=pad_token)
|
60 |
+
|
61 |
+
if self.d_condition > 0:
|
62 |
+
self.fc_condition = torch.nn.Linear(2, self.d_condition)
|
63 |
+
|
64 |
+
self.pos_encoding = DynamicPositionEmbedding(self.embedding_dim, max_seq=max_seq)
|
65 |
+
|
66 |
+
self.enc_layers = torch.nn.ModuleList(
|
67 |
+
[EncoderLayer(embedding_dim, d_inner, dropout, h=num_head, additional=False, max_seq=max_seq)
|
68 |
+
for _ in range(num_layer)])
|
69 |
+
self.dropout = torch.nn.Dropout(dropout)
|
70 |
+
|
71 |
+
self.fc = torch.nn.Linear(self.embedding_dim, self.vocab_size)
|
72 |
+
|
73 |
+
self.init_weights()
|
74 |
+
|
75 |
+
def init_weights(self):
|
76 |
+
initrange = 0.1
|
77 |
+
self.embedding.weight.data.uniform_(-initrange, initrange)
|
78 |
+
self.fc.bias.data.zero_()
|
79 |
+
self.fc.weight.data.uniform_(-initrange, initrange)
|
80 |
+
if self.d_condition > 0:
|
81 |
+
self.fc_condition.bias.data.zero_()
|
82 |
+
self.fc_condition.weight.data.uniform_(-initrange, initrange)
|
83 |
+
|
84 |
+
def forward(self, x, condition):
|
85 |
+
# no_conditioning = not torch.equal(condition, condition)
|
86 |
+
# assert (self.d_condition > 0) != no_conditioning
|
87 |
+
# takes batch first
|
88 |
+
# x.shape = [batch_size, sequence_length]
|
89 |
+
mask = generate_mask(x, self.pad_token)
|
90 |
+
# embed input
|
91 |
+
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
|
92 |
+
x *= math.sqrt(self.embedding_dim-self.d_condition)
|
93 |
+
|
94 |
+
if self.d_condition > 0:
|
95 |
+
# embed condition using fully connected layer
|
96 |
+
condition = self.fc_condition(condition)
|
97 |
+
# tile to match input
|
98 |
+
condition = condition.unsqueeze(1).expand(-1, x.size(1), -1)
|
99 |
+
x = torch.cat([x, condition], dim=-1) # concatenate
|
100 |
+
|
101 |
+
x = self.pos_encoding(x)
|
102 |
+
x = self.dropout(x)
|
103 |
+
for i in range(len(self.enc_layers)):
|
104 |
+
x = self.enc_layers[i](x, mask)
|
105 |
+
|
106 |
+
x = self.fc(x)
|
107 |
+
|
108 |
+
return x
|
109 |
+
|
110 |
+
class EncoderLayer(torch.nn.Module):
|
111 |
+
def __init__(self, d_model, d_inner, rate=0.1, h=16, additional=False, max_seq=2048):
|
112 |
+
super(EncoderLayer, self).__init__()
|
113 |
+
|
114 |
+
self.d_model = d_model
|
115 |
+
self.rga = RelativeGlobalAttention(h=h, d=d_model, max_seq=max_seq, add_emb=additional)
|
116 |
+
|
117 |
+
self.FFN_pre = torch.nn.Linear(self.d_model, d_inner)
|
118 |
+
self.FFN_suf = torch.nn.Linear(d_inner, self.d_model)
|
119 |
+
|
120 |
+
self.layernorm1 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
121 |
+
self.layernorm2 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
122 |
+
|
123 |
+
self.dropout1 = torch.nn.Dropout(rate)
|
124 |
+
self.dropout2 = torch.nn.Dropout(rate)
|
125 |
+
|
126 |
+
def forward(self, x, mask=None):
|
127 |
+
attn_out = self.rga([x,x,x], mask)
|
128 |
+
attn_out = self.dropout1(attn_out)
|
129 |
+
out1 = self.layernorm1(attn_out+x)
|
130 |
+
|
131 |
+
ffn_out = F.relu(self.FFN_pre(out1))
|
132 |
+
ffn_out = self.FFN_suf(ffn_out)
|
133 |
+
ffn_out = self.dropout2(ffn_out)
|
134 |
+
out2 = self.layernorm2(out1+ffn_out)
|
135 |
+
return out2
|
136 |
+
|
137 |
+
def sinusoid(max_seq, embedding_dim):
|
138 |
+
return np.array([[
|
139 |
+
[
|
140 |
+
m.sin(
|
141 |
+
pos * m.exp(-m.log(10000) * i / embedding_dim) * m.exp(
|
142 |
+
m.log(10000) / embedding_dim * (i % 2)) + 0.5 * m.pi * (i % 2)
|
143 |
+
)
|
144 |
+
for i in range(embedding_dim)
|
145 |
+
]
|
146 |
+
for pos in range(max_seq)
|
147 |
+
]])
|
148 |
+
|
149 |
+
|
150 |
+
class DynamicPositionEmbedding(torch.nn.Module):
|
151 |
+
def __init__(self, embedding_dim, max_seq=2048):
|
152 |
+
super().__init__()
|
153 |
+
self.device = torch.device("cpu")
|
154 |
+
self.dtype = torch.float32
|
155 |
+
embed_sinusoid_list = sinusoid(max_seq, embedding_dim)
|
156 |
+
|
157 |
+
self.positional_embedding = torch.from_numpy(embed_sinusoid_list).to(
|
158 |
+
self.device, dtype=self.dtype)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
if x.device != self.device or x.dtype != self.dtype:
|
162 |
+
self.positional_embedding = self.positional_embedding.to(x.device, dtype=x.dtype)
|
163 |
+
x += self.positional_embedding[:, :x.size(1), :]
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
class RelativeGlobalAttention(torch.nn.Module):
|
168 |
+
"""
|
169 |
+
from Music Transformer ( Huang et al, 2018 )
|
170 |
+
[paper link](https://arxiv.org/pdf/1809.04281.pdf)
|
171 |
+
"""
|
172 |
+
def __init__(self, h=4, d=256, add_emb=False, max_seq=2048):
|
173 |
+
super().__init__()
|
174 |
+
self.len_k = None
|
175 |
+
self.max_seq = max_seq
|
176 |
+
self.E = None
|
177 |
+
self.h = h
|
178 |
+
self.d = d
|
179 |
+
self.dh = d // h
|
180 |
+
self.Wq = torch.nn.Linear(self.d, self.d)
|
181 |
+
self.Wk = torch.nn.Linear(self.d, self.d)
|
182 |
+
self.Wv = torch.nn.Linear(self.d, self.d)
|
183 |
+
self.fc = torch.nn.Linear(d, d)
|
184 |
+
self.additional = add_emb
|
185 |
+
self.E = torch.nn.Parameter(torch.randn([self.max_seq, int(self.dh)]))
|
186 |
+
if self.additional:
|
187 |
+
self.Radd = None
|
188 |
+
|
189 |
+
def forward(self, inputs, mask=None):
|
190 |
+
"""
|
191 |
+
:param inputs: a list of tensors. i.e) [Q, K, V]
|
192 |
+
:param mask: mask tensor
|
193 |
+
:param kwargs:
|
194 |
+
:return: final tensor ( output of attention )
|
195 |
+
"""
|
196 |
+
q = inputs[0]
|
197 |
+
q = self.Wq(q)
|
198 |
+
q = torch.reshape(q, (q.size(0), q.size(1), self.h, -1))
|
199 |
+
q = q.permute(0, 2, 1, 3) # batch, h, seq, dh
|
200 |
+
|
201 |
+
k = inputs[1]
|
202 |
+
k = self.Wk(k)
|
203 |
+
k = torch.reshape(k, (k.size(0), k.size(1), self.h, -1))
|
204 |
+
k = k.permute(0, 2, 1, 3)
|
205 |
+
|
206 |
+
v = inputs[2]
|
207 |
+
v = self.Wv(v)
|
208 |
+
v = torch.reshape(v, (v.size(0), v.size(1), self.h, -1))
|
209 |
+
v = v.permute(0, 2, 1, 3)
|
210 |
+
|
211 |
+
self.len_k = k.size(2)
|
212 |
+
self.len_q = q.size(2)
|
213 |
+
|
214 |
+
E = self._get_left_embedding(self.len_q, self.len_k).to(q.device)
|
215 |
+
QE = torch.einsum('bhld,md->bhlm', [q, E])
|
216 |
+
QE = self._qe_masking(QE)
|
217 |
+
Srel = self._skewing(QE)
|
218 |
+
|
219 |
+
Kt = k.permute(0, 1, 3, 2)
|
220 |
+
QKt = torch.matmul(q, Kt)
|
221 |
+
logits = QKt + Srel
|
222 |
+
logits = logits / math.sqrt(self.dh)
|
223 |
+
|
224 |
+
if mask is not None:
|
225 |
+
mask = mask.unsqueeze(1)
|
226 |
+
new_mask = torch.zeros_like(mask, dtype=torch.float)
|
227 |
+
new_mask.masked_fill_(mask, float("-inf"))
|
228 |
+
mask = new_mask
|
229 |
+
logits += mask
|
230 |
+
|
231 |
+
attention_weights = F.softmax(logits, -1)
|
232 |
+
attention = torch.matmul(attention_weights, v)
|
233 |
+
|
234 |
+
out = attention.permute(0, 2, 1, 3)
|
235 |
+
out = torch.reshape(out, (out.size(0), -1, self.d))
|
236 |
+
|
237 |
+
out = self.fc(out)
|
238 |
+
return out
|
239 |
+
|
240 |
+
def _get_left_embedding(self, len_q, len_k):
|
241 |
+
starting_point = max(0,self.max_seq-len_q)
|
242 |
+
e = self.E[starting_point:,:]
|
243 |
+
return e
|
244 |
+
|
245 |
+
def _skewing(self, tensor: torch.Tensor):
|
246 |
+
padded = F.pad(tensor, [1, 0, 0, 0, 0, 0, 0, 0])
|
247 |
+
reshaped = torch.reshape(padded, shape=[padded.size(0), padded.size(1), padded.size(-1), padded.size(-2)])
|
248 |
+
Srel = reshaped[:, :, 1:, :]
|
249 |
+
if self.len_k > self.len_q:
|
250 |
+
Srel = F.pad(Srel, [0, 0, 0, 0, 0, 0, 0, self.len_k-self.len_q])
|
251 |
+
elif self.len_k < self.len_q:
|
252 |
+
Srel = Srel[:, :, :, :self.len_k]
|
253 |
+
|
254 |
+
return Srel
|
255 |
+
|
256 |
+
@staticmethod
|
257 |
+
def _qe_masking(qe):
|
258 |
+
mask = sequence_mask(
|
259 |
+
torch.arange(qe.size()[-1] - 1, qe.size()[-1] - qe.size()[-2] - 1, -1).to(qe.device),
|
260 |
+
qe.size()[-1])
|
261 |
+
mask = ~mask.to(mask.device)
|
262 |
+
return mask.to(qe.dtype) * qe
|
263 |
+
|
264 |
+
def sequence_mask(length, max_length=None):
|
265 |
+
"""Tensorflow의 sequence_mask를 구현"""
|
266 |
+
if max_length is None:
|
267 |
+
max_length = length.max()
|
268 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
269 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
midi_emotion/src/models/music_regression.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math as m
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import sys
|
7 |
+
|
8 |
+
# from torch.nn.modules.activation import ReLU
|
9 |
+
|
10 |
+
sys.path.append("..")
|
11 |
+
# from utils import memory
|
12 |
+
|
13 |
+
|
14 |
+
"""
|
15 |
+
MUSIC TRANSFORMER REGRESSION (to output emotion)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def generate_mask(x, pad_token=None, batch_first=True):
|
19 |
+
|
20 |
+
batch_size = x.size(0)
|
21 |
+
seq_len = x.size(1)
|
22 |
+
|
23 |
+
subsequent_mask = torch.logical_not(torch.triu(torch.ones(seq_len, seq_len, device=x.device)).t()).unsqueeze(
|
24 |
+
-1).repeat(1, 1, batch_size)
|
25 |
+
pad_mask = x == pad_token
|
26 |
+
if batch_first:
|
27 |
+
pad_mask = pad_mask.t()
|
28 |
+
mask = torch.logical_or(subsequent_mask, pad_mask)
|
29 |
+
if batch_first:
|
30 |
+
mask = mask.permute(2, 0, 1)
|
31 |
+
return mask
|
32 |
+
|
33 |
+
|
34 |
+
class MusicRegression(torch.nn.Module):
|
35 |
+
def __init__(self, embedding_dim=None, d_inner=None, vocab_size=None, num_layer=None, num_head=None,
|
36 |
+
max_seq=None, dropout=None, pad_token=None, output_size=None,
|
37 |
+
d_condition=-1, no_mask=True
|
38 |
+
):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
assert d_condition <= 0
|
42 |
+
|
43 |
+
self.max_seq = max_seq
|
44 |
+
self.num_layer = num_layer
|
45 |
+
self.embedding_dim = embedding_dim
|
46 |
+
self.vocab_size = vocab_size
|
47 |
+
|
48 |
+
self.pad_token = pad_token
|
49 |
+
|
50 |
+
self.no_mask = no_mask
|
51 |
+
|
52 |
+
self.embedding = torch.nn.Embedding(num_embeddings=vocab_size,
|
53 |
+
embedding_dim=self.embedding_dim,
|
54 |
+
padding_idx=pad_token)
|
55 |
+
|
56 |
+
|
57 |
+
self.pos_encoding = DynamicPositionEmbedding(self.embedding_dim, max_seq=max_seq)
|
58 |
+
|
59 |
+
self.enc_layers = torch.nn.ModuleList(
|
60 |
+
[EncoderLayer(embedding_dim, d_inner, dropout, h=num_head, additional=False, max_seq=max_seq)
|
61 |
+
for _ in range(num_layer)])
|
62 |
+
self.dropout = torch.nn.Dropout(dropout)
|
63 |
+
|
64 |
+
self.fc = torch.nn.Sequential(
|
65 |
+
torch.nn.Linear(self.embedding_dim, output_size),
|
66 |
+
torch.nn.Tanh()
|
67 |
+
)
|
68 |
+
|
69 |
+
self.init_weights()
|
70 |
+
|
71 |
+
def init_weights(self):
|
72 |
+
initrange = 0.1
|
73 |
+
self.embedding.weight.data.uniform_(-initrange, initrange)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
|
77 |
+
mask = None if self.no_mask else generate_mask(x, self.pad_token)
|
78 |
+
# embed input
|
79 |
+
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
|
80 |
+
x *= math.sqrt(self.embedding_dim)
|
81 |
+
|
82 |
+
x = self.pos_encoding(x)
|
83 |
+
x = self.dropout(x)
|
84 |
+
for i in range(len(self.enc_layers)):
|
85 |
+
x = self.enc_layers[i](x, mask)
|
86 |
+
|
87 |
+
x = self.fc(x[:, 0, :])
|
88 |
+
|
89 |
+
return x
|
90 |
+
|
91 |
+
class EncoderLayer(torch.nn.Module):
|
92 |
+
def __init__(self, d_model, d_inner, rate=0.1, h=16, additional=False, max_seq=2048):
|
93 |
+
super(EncoderLayer, self).__init__()
|
94 |
+
|
95 |
+
self.d_model = d_model
|
96 |
+
self.rga = RelativeGlobalAttention(h=h, d=d_model, max_seq=max_seq, add_emb=additional)
|
97 |
+
|
98 |
+
self.FFN_pre = torch.nn.Linear(self.d_model, d_inner)
|
99 |
+
self.FFN_suf = torch.nn.Linear(d_inner, self.d_model)
|
100 |
+
|
101 |
+
self.layernorm1 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
102 |
+
self.layernorm2 = torch.nn.LayerNorm(self.d_model, eps=1e-6)
|
103 |
+
|
104 |
+
self.dropout1 = torch.nn.Dropout(rate)
|
105 |
+
self.dropout2 = torch.nn.Dropout(rate)
|
106 |
+
|
107 |
+
def forward(self, x, mask=None):
|
108 |
+
attn_out = self.rga([x,x,x], mask)
|
109 |
+
attn_out = self.dropout1(attn_out)
|
110 |
+
out1 = self.layernorm1(attn_out+x)
|
111 |
+
|
112 |
+
ffn_out = F.relu(self.FFN_pre(out1))
|
113 |
+
ffn_out = self.FFN_suf(ffn_out)
|
114 |
+
ffn_out = self.dropout2(ffn_out)
|
115 |
+
out2 = self.layernorm2(out1+ffn_out)
|
116 |
+
return out2
|
117 |
+
|
118 |
+
def sinusoid(max_seq, embedding_dim):
|
119 |
+
return np.array([[
|
120 |
+
[
|
121 |
+
m.sin(
|
122 |
+
pos * m.exp(-m.log(10000) * i / embedding_dim) * m.exp(
|
123 |
+
m.log(10000) / embedding_dim * (i % 2)) + 0.5 * m.pi * (i % 2)
|
124 |
+
)
|
125 |
+
for i in range(embedding_dim)
|
126 |
+
]
|
127 |
+
for pos in range(max_seq)
|
128 |
+
]])
|
129 |
+
|
130 |
+
|
131 |
+
class DynamicPositionEmbedding(torch.nn.Module):
|
132 |
+
def __init__(self, embedding_dim, max_seq=2048):
|
133 |
+
super().__init__()
|
134 |
+
self.device = torch.device("cpu")
|
135 |
+
self.dtype = torch.float32
|
136 |
+
embed_sinusoid_list = sinusoid(max_seq, embedding_dim)
|
137 |
+
|
138 |
+
self.positional_embedding = torch.from_numpy(embed_sinusoid_list).to(
|
139 |
+
self.device, dtype=self.dtype)
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
if x.device != self.device or x.dtype != self.dtype:
|
143 |
+
self.positional_embedding = self.positional_embedding.to(x.device, dtype=x.dtype)
|
144 |
+
x += self.positional_embedding[:, :x.size(1), :]
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
class RelativeGlobalAttention(torch.nn.Module):
|
149 |
+
"""
|
150 |
+
from Music Transformer ( Huang et al, 2018 )
|
151 |
+
[paper link](https://arxiv.org/pdf/1809.04281.pdf)
|
152 |
+
"""
|
153 |
+
def __init__(self, h=4, d=256, add_emb=False, max_seq=2048):
|
154 |
+
super().__init__()
|
155 |
+
self.len_k = None
|
156 |
+
self.max_seq = max_seq
|
157 |
+
self.E = None
|
158 |
+
self.h = h
|
159 |
+
self.d = d
|
160 |
+
self.dh = d // h
|
161 |
+
self.Wq = torch.nn.Linear(self.d, self.d)
|
162 |
+
self.Wk = torch.nn.Linear(self.d, self.d)
|
163 |
+
self.Wv = torch.nn.Linear(self.d, self.d)
|
164 |
+
self.fc = torch.nn.Linear(d, d)
|
165 |
+
self.additional = add_emb
|
166 |
+
self.E = torch.nn.Parameter(torch.randn([self.max_seq, int(self.dh)]))
|
167 |
+
if self.additional:
|
168 |
+
self.Radd = None
|
169 |
+
|
170 |
+
def forward(self, inputs, mask=None):
|
171 |
+
"""
|
172 |
+
:param inputs: a list of tensors. i.e) [Q, K, V]
|
173 |
+
:param mask: mask tensor
|
174 |
+
:param kwargs:
|
175 |
+
:return: final tensor ( output of attention )
|
176 |
+
"""
|
177 |
+
q = inputs[0]
|
178 |
+
q = self.Wq(q)
|
179 |
+
q = torch.reshape(q, (q.size(0), q.size(1), self.h, -1))
|
180 |
+
q = q.permute(0, 2, 1, 3) # batch, h, seq, dh
|
181 |
+
|
182 |
+
k = inputs[1]
|
183 |
+
k = self.Wk(k)
|
184 |
+
k = torch.reshape(k, (k.size(0), k.size(1), self.h, -1))
|
185 |
+
k = k.permute(0, 2, 1, 3)
|
186 |
+
|
187 |
+
v = inputs[2]
|
188 |
+
v = self.Wv(v)
|
189 |
+
v = torch.reshape(v, (v.size(0), v.size(1), self.h, -1))
|
190 |
+
v = v.permute(0, 2, 1, 3)
|
191 |
+
|
192 |
+
self.len_k = k.size(2)
|
193 |
+
self.len_q = q.size(2)
|
194 |
+
|
195 |
+
E = self._get_left_embedding(self.len_q, self.len_k).to(q.device)
|
196 |
+
QE = torch.einsum('bhld,md->bhlm', [q, E])
|
197 |
+
QE = self._qe_masking(QE)
|
198 |
+
Srel = self._skewing(QE)
|
199 |
+
|
200 |
+
Kt = k.permute(0, 1, 3, 2)
|
201 |
+
QKt = torch.matmul(q, Kt)
|
202 |
+
logits = QKt + Srel
|
203 |
+
logits = logits / math.sqrt(self.dh)
|
204 |
+
|
205 |
+
if mask is not None:
|
206 |
+
mask = mask.unsqueeze(1)
|
207 |
+
new_mask = torch.zeros_like(mask, dtype=torch.float)
|
208 |
+
new_mask.masked_fill_(mask, float("-inf"))
|
209 |
+
mask = new_mask
|
210 |
+
logits += mask
|
211 |
+
|
212 |
+
attention_weights = F.softmax(logits, -1)
|
213 |
+
attention = torch.matmul(attention_weights, v)
|
214 |
+
|
215 |
+
out = attention.permute(0, 2, 1, 3)
|
216 |
+
out = torch.reshape(out, (out.size(0), -1, self.d))
|
217 |
+
|
218 |
+
out = self.fc(out)
|
219 |
+
return out
|
220 |
+
|
221 |
+
def _get_left_embedding(self, len_q, len_k):
|
222 |
+
starting_point = max(0,self.max_seq-len_q)
|
223 |
+
e = self.E[starting_point:,:]
|
224 |
+
return e
|
225 |
+
|
226 |
+
def _skewing(self, tensor: torch.Tensor):
|
227 |
+
padded = F.pad(tensor, [1, 0, 0, 0, 0, 0, 0, 0])
|
228 |
+
reshaped = torch.reshape(padded, shape=[padded.size(0), padded.size(1), padded.size(-1), padded.size(-2)])
|
229 |
+
Srel = reshaped[:, :, 1:, :]
|
230 |
+
if self.len_k > self.len_q:
|
231 |
+
Srel = F.pad(Srel, [0, 0, 0, 0, 0, 0, 0, self.len_k-self.len_q])
|
232 |
+
elif self.len_k < self.len_q:
|
233 |
+
Srel = Srel[:, :, :, :self.len_k]
|
234 |
+
|
235 |
+
return Srel
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def _qe_masking(qe):
|
239 |
+
mask = sequence_mask(
|
240 |
+
torch.arange(qe.size()[-1] - 1, qe.size()[-1] - qe.size()[-2] - 1, -1).to(qe.device),
|
241 |
+
qe.size()[-1])
|
242 |
+
mask = ~mask.to(mask.device)
|
243 |
+
return mask.to(qe.dtype) * qe
|
244 |
+
|
245 |
+
def sequence_mask(length, max_length=None):
|
246 |
+
"""Tensorflow의 sequence_mask를 구현"""
|
247 |
+
if max_length is None:
|
248 |
+
max_length = length.max()
|
249 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
250 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
midi_emotion/src/models/transfer_model.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import sys
|
4 |
+
sys.path.append("..")
|
5 |
+
from models.build_model import build_model
|
6 |
+
|
7 |
+
"""
|
8 |
+
Transfers model weights.
|
9 |
+
You can create a non-trained target model buy running:
|
10 |
+
python train.py --log_step 1 --max_step 1 ...
|
11 |
+
"""
|
12 |
+
|
13 |
+
trained_model_dir = "20220803-130921"
|
14 |
+
new_model_dir = "20220803-131016"
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else 'cpu'
|
17 |
+
|
18 |
+
main_dir = "../../output"
|
19 |
+
|
20 |
+
trained_config = torch.load(os.path.join(main_dir, trained_model_dir, "model_config.pt"))
|
21 |
+
|
22 |
+
trained_model, _ = build_model(None, load_config_dict=trained_config)
|
23 |
+
trained_model = trained_model.to(device)
|
24 |
+
trained_model.load_state_dict(torch.load(os.path.join(main_dir, trained_model_dir, 'model.pt'), map_location=device))
|
25 |
+
|
26 |
+
new_config = torch.load(os.path.join(main_dir, new_model_dir, "model_config.pt"))
|
27 |
+
new_model, _ = build_model(None, load_config_dict=new_config)
|
28 |
+
new_model = new_model.to(device)
|
29 |
+
|
30 |
+
trained_params = trained_model.named_parameters()
|
31 |
+
new_params = new_model.named_parameters()
|
32 |
+
dict_new_params = dict(new_params)
|
33 |
+
for name1, param1 in trained_params:
|
34 |
+
if name1 in dict_new_params:
|
35 |
+
|
36 |
+
if name1 == 'embedding.weight':
|
37 |
+
# continuous_concat may have different sized embedding
|
38 |
+
size1 = dict_new_params[name1].data.shape[1]
|
39 |
+
size2 = param1.data.shape[1]
|
40 |
+
size_transfer = min((size1, size2))
|
41 |
+
dict_new_params[name1].data[:, :size_transfer] = param1.data[:, :size_transfer]
|
42 |
+
else:
|
43 |
+
dict_new_params[name1].data.copy_(param1.data)
|
44 |
+
|
45 |
+
|
46 |
+
output_path = os.path.join(main_dir, new_model_dir, 'model.pt')
|
47 |
+
torch.save(new_model.state_dict(), output_path)
|
48 |
+
|
49 |
+
print(f"Saved to {output_path}")
|
midi_emotion/src/models/transformer.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.checkpoint
|
6 |
+
|
7 |
+
class Transformer(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self, n_tokens=None, n_layer=None, n_head=None, d_model=None, d_ff=None,
|
10 |
+
dropout=0.0, pad_idx=0):
|
11 |
+
super(Transformer, self).__init__()
|
12 |
+
from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
13 |
+
# self.name = 'Transformer'
|
14 |
+
self.pos_encoder = PositionalEncoding(d_model, dropout)
|
15 |
+
encoder_layers = TransformerEncoderLayer(d_model, n_head, dim_feedforward=d_ff, dropout=dropout)
|
16 |
+
norm = nn.LayerNorm(d_model)
|
17 |
+
self.transformer_encoder = TransformerEncoder(encoder_layers, n_layer, norm=norm)
|
18 |
+
self.encoder = nn.Embedding(n_tokens, d_model, padding_idx=pad_idx)
|
19 |
+
self.d_model = d_model
|
20 |
+
self.decoder = nn.Linear(d_model, n_tokens)
|
21 |
+
|
22 |
+
self.init_weights()
|
23 |
+
|
24 |
+
def init_weights(self):
|
25 |
+
initrange = 0.1
|
26 |
+
self.encoder.weight.data.uniform_(-initrange, initrange)
|
27 |
+
self.decoder.bias.data.zero_()
|
28 |
+
self.decoder.weight.data.uniform_(-initrange, initrange)
|
29 |
+
|
30 |
+
def forward(self, src, src_mask, src_key_padding_mask=None):
|
31 |
+
|
32 |
+
src = self.encoder(src) * math.sqrt(self.d_model)
|
33 |
+
src = self.pos_encoder(src)
|
34 |
+
output = self.transformer_encoder(src, src_mask,
|
35 |
+
src_key_padding_mask=src_key_padding_mask)
|
36 |
+
output = self.decoder(output)
|
37 |
+
return output
|
38 |
+
|
39 |
+
|
40 |
+
class PositionalEncoding(nn.Module):
|
41 |
+
|
42 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
43 |
+
super(PositionalEncoding, self).__init__()
|
44 |
+
self.dropout = nn.Dropout(p=dropout)
|
45 |
+
|
46 |
+
pe = torch.zeros(max_len, d_model)
|
47 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
48 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
49 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
50 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
51 |
+
pe = pe.unsqueeze(0).transpose(0, 1)
|
52 |
+
self.register_buffer('pe', pe)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x = x + self.pe[:x.size(0), :]
|
56 |
+
return self.dropout(x)
|
midi_emotion/src/train.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import math
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.optim as optim
|
10 |
+
from tqdm import tqdm
|
11 |
+
from models.build_model import build_model
|
12 |
+
from generate import generate
|
13 |
+
from data.preprocess_features import preprocess_features
|
14 |
+
from data.loader import Loader
|
15 |
+
from data.loader_exhaustive import LoaderExhaustive
|
16 |
+
from data.loader_generations import LoaderGenerations
|
17 |
+
from data.collate import filter_collate
|
18 |
+
from utils import CsvWriter, create_exp_dir, accuracy
|
19 |
+
from config import args
|
20 |
+
|
21 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
22 |
+
|
23 |
+
# Set the random seed manually for reproducibility.
|
24 |
+
if args.seed > 0:
|
25 |
+
np.random.seed(args.seed)
|
26 |
+
torch.manual_seed(args.seed)
|
27 |
+
torch.cuda.manual_seed(args.seed)
|
28 |
+
random.seed(args.seed)
|
29 |
+
|
30 |
+
class Runner:
|
31 |
+
def __init__(self):
|
32 |
+
self.logging = create_exp_dir(args.work_dir, debug=args.debug)
|
33 |
+
use_cuda = torch.cuda.is_available() and not args.no_cuda
|
34 |
+
self.device = torch.device('cuda' if use_cuda else 'cpu')
|
35 |
+
if self.device == torch.device("cuda"):
|
36 |
+
self.logging("Using GPU")
|
37 |
+
else:
|
38 |
+
self.logging("Using CPU")
|
39 |
+
|
40 |
+
self.train_step = 0
|
41 |
+
self.n_sequences_total = 0
|
42 |
+
self.init_hours = 0
|
43 |
+
self.epoch = 0
|
44 |
+
self.init_time = time.time()
|
45 |
+
|
46 |
+
# Load data
|
47 |
+
n_bins = args.n_emotion_bins if args.conditioning == "discrete_token" and \
|
48 |
+
not args.regression else None
|
49 |
+
|
50 |
+
conditional = args.conditioning != "none" or args.regression
|
51 |
+
|
52 |
+
# Preprocessing
|
53 |
+
train_feats, test_feats = preprocess_features(
|
54 |
+
"../data_files/features/pianoroll/full_dataset_features_summarized.csv",
|
55 |
+
n_bins=n_bins, conditional=conditional,
|
56 |
+
use_labeled_only=not args.full_dataset)
|
57 |
+
|
58 |
+
if args.exhaustive_eval:
|
59 |
+
# Evaluate using ENTIRE test set
|
60 |
+
train_dataset = []
|
61 |
+
test_dataset = LoaderExhaustive(args.data_folder, test_feats, args.tgt_len, args.conditioning,
|
62 |
+
max_samples=args.n_samples, regression=args.regression,
|
63 |
+
always_use_discrete_condition=args.always_use_discrete_condition)
|
64 |
+
else:
|
65 |
+
train_dataset = Loader(args.data_folder, train_feats, args.tgt_len, args.conditioning,
|
66 |
+
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
|
67 |
+
test_dataset = Loader(args.data_folder, test_feats, args.tgt_len, args.conditioning,
|
68 |
+
regression=args.regression, always_use_discrete_condition=args.always_use_discrete_condition)
|
69 |
+
|
70 |
+
if args.regression_dir is not None:
|
71 |
+
# Perform emotion regression on generated samples
|
72 |
+
train_dataset = []
|
73 |
+
test_dataset = LoaderGenerations(args.regression_dir, args.tgt_len)
|
74 |
+
|
75 |
+
self.null_condition = torch.FloatTensor([np.nan, np.nan]).to(self.device)
|
76 |
+
|
77 |
+
self.maps = test_dataset.get_maps()
|
78 |
+
self.pad_idx = test_dataset.get_pad_idx()
|
79 |
+
|
80 |
+
self.vocab_size = test_dataset.get_vocab_len()
|
81 |
+
args.vocab_size = self.vocab_size
|
82 |
+
self.logging(f"Number of tokens: {self.vocab_size}")
|
83 |
+
|
84 |
+
if args.exhaustive_eval or args.regression_dir is not None:
|
85 |
+
self.train_loader = []
|
86 |
+
else:
|
87 |
+
self.train_loader = torch.utils.data.DataLoader(train_dataset, args.batch_size, shuffle=not args.debug,
|
88 |
+
num_workers=args.num_workers, collate_fn=filter_collate,
|
89 |
+
pin_memory=not args.no_cuda, drop_last=True)
|
90 |
+
self.test_loader = torch.utils.data.DataLoader(test_dataset, args.batch_size, shuffle=False,
|
91 |
+
num_workers=args.num_workers, collate_fn=filter_collate,
|
92 |
+
pin_memory=not args.no_cuda and args.regression_dir is None,
|
93 |
+
drop_last=True)
|
94 |
+
print(f"Data loader lengths\nTrain: {len(train_dataset)}")
|
95 |
+
if not args.overfit:
|
96 |
+
print(f"Test:{len(test_dataset)}")
|
97 |
+
|
98 |
+
self.gen_dir = os.path.join(args.work_dir, "generations", "training")
|
99 |
+
|
100 |
+
# Automatic mixed precision
|
101 |
+
self.amp = not args.no_amp and self.device == torch.device('cuda')
|
102 |
+
|
103 |
+
if self.amp:
|
104 |
+
self.logging("Using automatic mixed precision")
|
105 |
+
else:
|
106 |
+
self.logging("Using float32")
|
107 |
+
|
108 |
+
self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
|
109 |
+
self.init_model() # Build the model
|
110 |
+
|
111 |
+
if not args.debug:
|
112 |
+
# Save mappings
|
113 |
+
os.makedirs(self.gen_dir, exist_ok=True)
|
114 |
+
torch.save(self.maps, os.path.join(args.work_dir, "mappings.pt"))
|
115 |
+
|
116 |
+
self.csv_writer = CsvWriter(os.path.join(args.work_dir, "performance.csv"),
|
117 |
+
["epoch", "step", "hour", "lr", "trn_loss", "val_loss", "val_l1_v", "val_l1_a"],
|
118 |
+
in_path=self.csv_in, debug=args.debug)
|
119 |
+
|
120 |
+
args.n_all_param = sum([p.nelement() for p in self.model.parameters()])
|
121 |
+
|
122 |
+
self.model = self.model.to(self.device)
|
123 |
+
|
124 |
+
self.ce_loss = nn.CrossEntropyLoss(ignore_index=self.pad_idx).to(self.device)
|
125 |
+
self.mse_loss = nn.MSELoss()
|
126 |
+
self.l1_loss = nn.L1Loss()
|
127 |
+
|
128 |
+
#### scheduler
|
129 |
+
if args.scheduler == '--':
|
130 |
+
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer,
|
131 |
+
args.max_step, eta_min=args.eta_min)
|
132 |
+
elif args.scheduler == 'dev_perf':
|
133 |
+
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer,
|
134 |
+
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
|
135 |
+
elif args.scheduler == 'constant':
|
136 |
+
pass
|
137 |
+
elif args.scheduler == 'cyclic':
|
138 |
+
self.scheduler = optim.lr_scheduler.CyclicLR(self.optimizer,
|
139 |
+
args.lr_min, args.lr_max, verbose=False, cycle_momentum=False)
|
140 |
+
|
141 |
+
# Print log
|
142 |
+
if not args.debug:
|
143 |
+
self.logging('=' * 120)
|
144 |
+
for k, v in args.__dict__.items():
|
145 |
+
self.logging(' - {} : {}'.format(k, v))
|
146 |
+
self.logging('=' * 120)
|
147 |
+
self.logging('#params = {}'.format(args.n_all_param))
|
148 |
+
|
149 |
+
now = datetime.datetime.now()
|
150 |
+
now = now.strftime("%d-%m-%Y %H:%M")
|
151 |
+
self.logging(f"Run started at {now}")
|
152 |
+
self.once = True
|
153 |
+
|
154 |
+
def init_model(self):
|
155 |
+
# Initialize model
|
156 |
+
if args.restart_dir:
|
157 |
+
# Load existing model
|
158 |
+
config = torch.load(os.path.join(args.restart_dir, "model_config.pt"))
|
159 |
+
self.model, config = build_model(None, load_config_dict=config)
|
160 |
+
self.model = self.model.to(self.device)
|
161 |
+
|
162 |
+
model_fp = os.path.join(args.restart_dir, 'model.pt')
|
163 |
+
optimizer_fp = os.path.join(args.restart_dir, 'optimizer.pt')
|
164 |
+
stats_fp = os.path.join(args.restart_dir, 'stats.pt')
|
165 |
+
scaler_fp = os.path.join(args.restart_dir, 'scaler.pt')
|
166 |
+
|
167 |
+
self.model.load_state_dict(
|
168 |
+
torch.load(model_fp, map_location=lambda storage, loc: storage))
|
169 |
+
self.logging(f"Model loaded from {model_fp}")
|
170 |
+
|
171 |
+
self.csv_in = os.path.join(args.restart_dir, 'performance.csv')
|
172 |
+
else:
|
173 |
+
# Build model from scratch
|
174 |
+
self.csv_in = None
|
175 |
+
self.model, config = build_model(vars(args))
|
176 |
+
self.model = self.model.to(self.device)
|
177 |
+
|
178 |
+
# save model configuration for later load
|
179 |
+
if not args.debug:
|
180 |
+
torch.save(config, os.path.join(args.work_dir, "model_config.pt"))
|
181 |
+
|
182 |
+
self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr)
|
183 |
+
|
184 |
+
# Load self.optimizer if necessary
|
185 |
+
if args.restart_dir:
|
186 |
+
if os.path.exists(optimizer_fp):
|
187 |
+
try:
|
188 |
+
self.optimizer.load_state_dict(
|
189 |
+
torch.load(optimizer_fp, map_location=lambda storage, loc: storage))
|
190 |
+
except:
|
191 |
+
pass
|
192 |
+
else:
|
193 |
+
print('Optimizer was not saved. Start from scratch.')
|
194 |
+
|
195 |
+
try:
|
196 |
+
stats = torch.load(stats_fp)
|
197 |
+
self.train_step = stats["step"]
|
198 |
+
self.init_hours = stats["hour"]
|
199 |
+
self.epoch = stats["epoch"]
|
200 |
+
self.n_sequences_total = stats["sample"]
|
201 |
+
except:
|
202 |
+
self.train_step = 0
|
203 |
+
self.init_hours = 0
|
204 |
+
self.epoch = 0
|
205 |
+
self.n_sequences_total = 0
|
206 |
+
|
207 |
+
if os.path.exists(scaler_fp) and not args.reset_scaler:
|
208 |
+
try:
|
209 |
+
self.scaler.load_state_dict(torch.load(scaler_fp))
|
210 |
+
except:
|
211 |
+
pass
|
212 |
+
|
213 |
+
if args.overwrite_lr:
|
214 |
+
# New learning rate
|
215 |
+
for p in self.optimizer.param_groups:
|
216 |
+
p['lr'] = args.lr
|
217 |
+
|
218 |
+
###############################################################################
|
219 |
+
# EVALUATION
|
220 |
+
###############################################################################
|
221 |
+
|
222 |
+
def evaluate(self):
|
223 |
+
|
224 |
+
# Turn on evaluation mode which disables dropout.
|
225 |
+
self.model.eval()
|
226 |
+
|
227 |
+
# Evaluation
|
228 |
+
topk = (1, 5) # find accuracy for top-1 and top-5
|
229 |
+
n_elements_total, n_sequences_total, total_loss = 0, 0, 0.
|
230 |
+
total_accs = {"l1_v": 0., "l1_a": 0., "l1_mean": 0., "l1_mean_normal":0
|
231 |
+
} if args.regression else {k: 0. for k in topk}
|
232 |
+
with torch.no_grad():
|
233 |
+
n_batches = len(self.test_loader)
|
234 |
+
loader = enumerate(self.test_loader)
|
235 |
+
if args.exhaustive_eval or args.regression:
|
236 |
+
loader = tqdm(loader, total=n_batches)
|
237 |
+
for i, (input_, condition, target) in loader:
|
238 |
+
if args.max_eval_step > 0 and i >= args.max_eval_step:
|
239 |
+
break
|
240 |
+
if input_ != []:
|
241 |
+
input_ = input_.to(self.device)
|
242 |
+
condition = condition.to(self.device)
|
243 |
+
if not args.regression:
|
244 |
+
target = target.to(self.device)
|
245 |
+
loss, pred = self.forward_pass(input_, condition, target)
|
246 |
+
if args.regression:
|
247 |
+
pred = torch.clamp(pred, min=-1.0, max=1.0)
|
248 |
+
loss = self.l1_loss(pred, condition)
|
249 |
+
l1_v = self.l1_loss(pred[:, 0], condition[:, 0]).item()
|
250 |
+
l1_a = self.l1_loss(pred[:, 1], condition[:, 1]).item()
|
251 |
+
accuracies = {"l1_v": l1_v, "l1_a": l1_a,
|
252 |
+
"l1_mean": (l1_v + l1_a) / 2,
|
253 |
+
"l1_mean_normal": (l1_v + l1_a) / 2 / 2}
|
254 |
+
n_elements = pred[:, 0].numel()
|
255 |
+
else:
|
256 |
+
accuracies = accuracy(pred, target, topk=topk, ignore_index=self.pad_idx)
|
257 |
+
n_elements = input_.numel()
|
258 |
+
n_sequences = input_.size(0)
|
259 |
+
total_loss += n_elements * loss.item()
|
260 |
+
for key, value in accuracies.items():
|
261 |
+
total_accs[key] += n_elements * value
|
262 |
+
n_elements_total += n_elements
|
263 |
+
n_sequences_total += n_sequences
|
264 |
+
|
265 |
+
if n_elements_total == 0:
|
266 |
+
avg_loss = float('nan')
|
267 |
+
avg_accs = float('nan')
|
268 |
+
else:
|
269 |
+
avg_loss = total_loss / n_elements_total
|
270 |
+
avg_accs = {k: v/n_elements_total for k, v in total_accs.items()}
|
271 |
+
if args.exhaustive_eval:
|
272 |
+
print(f"Total number of sequences: {n_sequences_total}")
|
273 |
+
|
274 |
+
return avg_loss, avg_accs
|
275 |
+
|
276 |
+
def forward_pass(self, input_, condition, target):
|
277 |
+
|
278 |
+
input_ = input_.to(self.device)
|
279 |
+
condition = condition.to(self.device)
|
280 |
+
|
281 |
+
with torch.cuda.amp.autocast(enabled=self.amp):
|
282 |
+
if args.regression:
|
283 |
+
output = self.model(input_)
|
284 |
+
loss = self.l1_loss(output, condition)
|
285 |
+
else:
|
286 |
+
target = target.to(self.device)
|
287 |
+
output = self.model(input_, condition)
|
288 |
+
output_flat = output.reshape(-1, output.size(-1))
|
289 |
+
target = target.reshape(-1)
|
290 |
+
loss = self.ce_loss(output_flat, target)
|
291 |
+
|
292 |
+
return loss, output
|
293 |
+
|
294 |
+
def train(self):
|
295 |
+
# Turn on training mode which enables dropout.
|
296 |
+
self.model.train()
|
297 |
+
|
298 |
+
train_loss = 0
|
299 |
+
n_elements_total = 0
|
300 |
+
train_interval_start = time.time()
|
301 |
+
|
302 |
+
while True:
|
303 |
+
for input_, condition, target in self.train_loader:
|
304 |
+
self.model.train()
|
305 |
+
if input_ != []:
|
306 |
+
|
307 |
+
loss, _ = self.forward_pass(input_, condition, target)
|
308 |
+
loss_val = loss.item()
|
309 |
+
loss /= args.accumulate_step
|
310 |
+
|
311 |
+
n_elements = input_.numel()
|
312 |
+
if not math.isnan(loss_val):
|
313 |
+
train_loss += n_elements * loss_val
|
314 |
+
n_elements_total += n_elements
|
315 |
+
self.n_sequences_total += input_.size(0)
|
316 |
+
|
317 |
+
self.scaler.scale(loss).backward()
|
318 |
+
|
319 |
+
if self.train_step % args.accumulate_step == 0:
|
320 |
+
self.scaler.unscale_(self.optimizer)
|
321 |
+
if args.clip > 0:
|
322 |
+
torch.nn.utils.clip_grad_norm_(self.model.parameters(), args.clip)
|
323 |
+
self.scaler.step(self.optimizer)
|
324 |
+
self.scaler.update()
|
325 |
+
self.model.zero_grad()
|
326 |
+
|
327 |
+
if args.scheduler != "constant":
|
328 |
+
# linear warmup stage
|
329 |
+
if self.train_step <= args.warmup_step:
|
330 |
+
curr_lr = args.lr * self.train_step / args.warmup_step
|
331 |
+
self.optimizer.param_groups[0]['lr'] = curr_lr
|
332 |
+
else:
|
333 |
+
self.scheduler.step()
|
334 |
+
|
335 |
+
if (self.train_step % args.gen_step == 0) and self.train_step > 0 and not args.regression:
|
336 |
+
# Generate and save samples
|
337 |
+
with torch.no_grad():
|
338 |
+
self.model.eval()
|
339 |
+
if args.max_gen_input_len > 0:
|
340 |
+
max_input_len = args.max_gen_input_len
|
341 |
+
else:
|
342 |
+
max_input_len = args.tgt_len
|
343 |
+
|
344 |
+
primers = [["<START>"]]
|
345 |
+
# Use fixed set of conditions
|
346 |
+
if args.conditioning == "none":
|
347 |
+
discrete_conditions = None
|
348 |
+
continuous_conditions = None
|
349 |
+
primers = [["<START>"] for _ in range(4)]
|
350 |
+
|
351 |
+
elif args.conditioning == "discrete_token":
|
352 |
+
discrete_conditions = [
|
353 |
+
["<V-2>", "<A-2>"],
|
354 |
+
["<V-2>", "<A2>"],
|
355 |
+
["<V2>", "<A-2>"],
|
356 |
+
["<V2>", "<A2>"],
|
357 |
+
]
|
358 |
+
continuous_conditions = None
|
359 |
+
elif args.conditioning in ["continuous_token", "continuous_concat"]:
|
360 |
+
discrete_conditions = None
|
361 |
+
continuous_conditions = [
|
362 |
+
[-0.8, -0.8],
|
363 |
+
[-0.8, 0.8],
|
364 |
+
[0.8, -0.8],
|
365 |
+
[0.8, 0.8]
|
366 |
+
]
|
367 |
+
|
368 |
+
generate(self.model, self.maps, self.device, self.gen_dir, args.conditioning,
|
369 |
+
debug=args.debug, verbose=False, amp=self.amp, discrete_conditions=discrete_conditions,
|
370 |
+
continuous_conditions=continuous_conditions, min_n_instruments=1,
|
371 |
+
gen_len=args.gen_len, max_input_len=max_input_len,
|
372 |
+
step=str(self.train_step), primers=primers,
|
373 |
+
temperatures=[args.temp_note, args.temp_rest])
|
374 |
+
|
375 |
+
if (self.train_step % args.log_step == 0):
|
376 |
+
# Print log
|
377 |
+
if n_elements_total > 0:
|
378 |
+
cur_loss = train_loss / n_elements_total
|
379 |
+
elapsed_total = time.time() - self.init_time
|
380 |
+
elapsed_interval = time.time() - train_interval_start
|
381 |
+
hours_elapsed = elapsed_total / 3600.0
|
382 |
+
hours_total = self.init_hours + hours_elapsed
|
383 |
+
lr = self.optimizer.param_groups[0]['lr']
|
384 |
+
log_str = '| Epoch {:3d} step {:>8d} | {:>6d} sequences | {:>3.1f} h | lr {:.2e} ' \
|
385 |
+
'| ms/batch {:4.0f} | loss {:7.4f}'.format(
|
386 |
+
self.epoch, self.train_step, self.n_sequences_total, hours_total, lr,
|
387 |
+
elapsed_interval * 1000 / args.log_step, cur_loss)
|
388 |
+
self.logging(log_str)
|
389 |
+
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
|
390 |
+
"lr": lr, "trn_loss": cur_loss, "val_loss": np.nan,
|
391 |
+
"val_l1_v": np.nan, "val_l1_a": np.nan})
|
392 |
+
train_loss = 0
|
393 |
+
n_elements_total = 0
|
394 |
+
self.n_good_output, self.n_nan_output = 0, 0
|
395 |
+
train_interval_start = time.time()
|
396 |
+
|
397 |
+
if not args.debug:
|
398 |
+
# Save model
|
399 |
+
model_fp = os.path.join(args.work_dir, 'model.pt')
|
400 |
+
torch.save(self.model.state_dict(), model_fp)
|
401 |
+
optimizer_fp = os.path.join(args.work_dir, 'optimizer.pt')
|
402 |
+
torch.save(self.optimizer.state_dict(), optimizer_fp)
|
403 |
+
scaler_fp = os.path.join(args.work_dir, 'scaler.pt')
|
404 |
+
torch.save(self.scaler.state_dict(), scaler_fp)
|
405 |
+
torch.save({"step": self.train_step, "hour": hours_total, "epoch": self.epoch,
|
406 |
+
"sample": self.n_sequences_total},
|
407 |
+
os.path.join(args.work_dir, 'stats.pt'))
|
408 |
+
|
409 |
+
if (self.train_step % args.eval_step == 0):
|
410 |
+
# Evaluate model
|
411 |
+
val_loss, val_acc = self.evaluate()
|
412 |
+
elapsed_total = time.time() - self.init_time
|
413 |
+
hours_elapsed = elapsed_total / 3600.0
|
414 |
+
hours_total = self.init_hours + hours_elapsed
|
415 |
+
lr = self.optimizer.param_groups[0]['lr']
|
416 |
+
self.logging('-' * 120)
|
417 |
+
log_str = '| Eval {:3d} step {:>8d} | now: {} | {:>3.1f} h' \
|
418 |
+
'| valid loss {:7.4f} | ppl {:5.3f}'.format(
|
419 |
+
self.train_step // args.eval_step, self.train_step,
|
420 |
+
time.strftime("%d-%m - %H:%M"), hours_total,
|
421 |
+
val_loss, math.exp(val_loss))
|
422 |
+
if args.regression:
|
423 |
+
log_str += " | l1_v: {:5.3f} | l1_a: {:5.3f}".format(
|
424 |
+
val_acc["l1_v"], val_acc["l1_a"])
|
425 |
+
|
426 |
+
self.csv_writer.update({"epoch": self.epoch, "step": self.train_step, "hour": hours_total,
|
427 |
+
"lr": lr, "trn_loss": np.nan, "val_loss": val_loss})
|
428 |
+
|
429 |
+
self.logging(log_str)
|
430 |
+
self.logging('-' * 120)
|
431 |
+
|
432 |
+
# dev-performance based learning rate annealing
|
433 |
+
if args.scheduler == 'dev_perf':
|
434 |
+
self.scheduler.step(val_loss)
|
435 |
+
|
436 |
+
if self.train_step >= args.max_step:
|
437 |
+
break
|
438 |
+
self.train_step += 1
|
439 |
+
self.epoch += 1
|
440 |
+
if self.train_step >= args.max_step:
|
441 |
+
break
|
442 |
+
|
443 |
+
def run(self):
|
444 |
+
|
445 |
+
# Loop over epochs.
|
446 |
+
# At any point you can hit Ctrl + C to break out of training early.
|
447 |
+
try:
|
448 |
+
if args.exhaustive_eval or args.regression_dir is not None:
|
449 |
+
self.logging("Exhaustive evaluation")
|
450 |
+
if args.regression_dir is not None:
|
451 |
+
self.logging(f"For regression on folder {args.regression_dir}")
|
452 |
+
loss, accuracies = self.evaluate()
|
453 |
+
perplexity = math.exp(loss)
|
454 |
+
elapsed_total = time.time() - self.init_time
|
455 |
+
hours_elapsed = elapsed_total / 3600.0
|
456 |
+
msg = f"Loss: {loss:7.4f}, ppl: {perplexity:5.2f}"
|
457 |
+
for k, v in accuracies.items():
|
458 |
+
if args.regression:
|
459 |
+
msg += f", {k}: {v:7.4f}"
|
460 |
+
else:
|
461 |
+
msg += f", top{k:1.0f}: {v:7.4f}"
|
462 |
+
msg += f", hours: {hours_elapsed:3.1f}"
|
463 |
+
self.logging(msg)
|
464 |
+
else:
|
465 |
+
while True:
|
466 |
+
self.train()
|
467 |
+
if self.train_step >= args.max_step:
|
468 |
+
self.logging('-' * 120)
|
469 |
+
self.logging('End of training')
|
470 |
+
break
|
471 |
+
except KeyboardInterrupt:
|
472 |
+
self.logging('-' * 120)
|
473 |
+
self.logging('Exiting from training early')
|
474 |
+
|
475 |
+
if __name__ == "__main__":
|
476 |
+
runner = Runner()
|
477 |
+
runner.run()
|
midi_emotion/src/utils.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import csv
|
3 |
+
import shutil
|
4 |
+
import functools
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
def split_list(alist, n_parts):
|
9 |
+
if n_parts == 0:
|
10 |
+
n_parts = 1
|
11 |
+
length = len(alist)
|
12 |
+
return [ alist[i*length // n_parts: (i+1)*length // n_parts]
|
13 |
+
for i in range(n_parts)]
|
14 |
+
|
15 |
+
def accuracy(output: torch.Tensor, target: torch.Tensor, topk=(1, 5), ignore_index=None):
|
16 |
+
"""
|
17 |
+
Computes the accuracy over the k top predictions for the specified values of k
|
18 |
+
In top-5 accuracy you give yourself credit for having the right answer
|
19 |
+
if the right answer appears in your top five guesses.
|
20 |
+
|
21 |
+
ref:
|
22 |
+
- https://discuss.pytorch.org/t/top-k-error-calculation/48815/3
|
23 |
+
|
24 |
+
- https://pytorch.org/docs/stable/generated/torch.topk.html
|
25 |
+
- https://discuss.pytorch.org/t/imagenet-example-accuracy-calculation/7840
|
26 |
+
- https://gist.github.com/weiaicunzai/2a5ae6eac6712c70bde0630f3e76b77b
|
27 |
+
- https://discuss.pytorch.org/t/top-k-error-calculation/48815/2
|
28 |
+
- https://stackoverflow.com/questions/59474987/how-to-get-top-k-accuracy-in-semantic-segmentation-using-pytorch
|
29 |
+
|
30 |
+
:param output: output is the prediction of the model e.g. scores, logits, raw y_pred before normalization or getting classes
|
31 |
+
:param target: target is the truth
|
32 |
+
:param topk: tuple of topk's to compute e.g. (1, 2, 5) computes top 1, top 2 and top 5.
|
33 |
+
e.g. in top 2 it means you get a +1 if your models's top 2 predictions are in the right label.
|
34 |
+
So if your model predicts cat, dog (0, 1) and the true label was bird (3) you get zero
|
35 |
+
but if it were either cat or dog you'd accumulate +1 for that example.
|
36 |
+
:return: list of topk accuracy [top1st, top2nd, ...] depending on your topk input
|
37 |
+
"""
|
38 |
+
with torch.no_grad():
|
39 |
+
# ---- get the topk most likely labels according to your model
|
40 |
+
# get the largest k \in [n_classes] (i.e. the number of most likely probabilities we will use)
|
41 |
+
|
42 |
+
maxk = max(topk) # max number labels we will consider in the right choices for out model
|
43 |
+
|
44 |
+
output = output.reshape(-1, output.size(-1))
|
45 |
+
target = target.reshape(-1)
|
46 |
+
|
47 |
+
valid_inds = torch.where(target != ignore_index)[0]
|
48 |
+
target = target[valid_inds]
|
49 |
+
output = output[valid_inds, :]
|
50 |
+
|
51 |
+
sample_size = target.size(0)
|
52 |
+
|
53 |
+
# get top maxk indicies that correspond to the most likely probability scores
|
54 |
+
# (note _ means we don't care about the actual top maxk scores just their corresponding indicies/labels)
|
55 |
+
_, y_pred = output.topk(k=maxk, dim=-1) # _, [B, n_classes] -> [B, maxk]
|
56 |
+
y_pred = y_pred.t() # [B, maxk] -> [maxk, B] Expects input to be <= 2-D tensor and transposes dimensions 0 and 1.
|
57 |
+
|
58 |
+
# - get the credit for each example if the models predictions is in maxk values (main crux of code)
|
59 |
+
# for any example, the model will get credit if it's prediction matches the ground truth
|
60 |
+
# for each example we compare if the model's best prediction matches the truth. If yes we get an entry of 1.
|
61 |
+
# if the k'th top answer of the model matches the truth we get 1.
|
62 |
+
# Note: this for any example in batch we can only ever get 1 match (so we never overestimate accuracy <1)
|
63 |
+
target_reshaped = target.view(1, -1).expand_as(y_pred) # [B] -> [B, 1] -> [maxk, B]
|
64 |
+
# compare every topk's model prediction with the ground truth & give credit if any matches the ground truth
|
65 |
+
correct = (y_pred == target_reshaped) # [maxk, B] were for each example we know which topk prediction matched truth
|
66 |
+
# original: correct = pred.eq(target.view(1, -1).expand_as(pred))
|
67 |
+
|
68 |
+
# -- get topk accuracy
|
69 |
+
list_topk_accs = {}
|
70 |
+
for k in topk:
|
71 |
+
# get tensor of which topk answer was right
|
72 |
+
ind_which_topk_matched_truth = correct[:k] # [maxk, B] -> [k, B]
|
73 |
+
# flatten it to help compute if we got it correct for each example in batch
|
74 |
+
flattened_indicator_which_topk_matched_truth = ind_which_topk_matched_truth.reshape(-1).float() # [k, B] -> [kB]
|
75 |
+
# get if we got it right for any of our top k prediction for each example in batch
|
76 |
+
tot_correct_topk = flattened_indicator_which_topk_matched_truth.float().sum(dim=0, keepdim=True) # [kB] -> [1]
|
77 |
+
# compute topk accuracy - the accuracy of the mode's ability to get it right within it's top k guesses/preds
|
78 |
+
topk_acc = tot_correct_topk / sample_size # topk accuracy for entire batch
|
79 |
+
list_topk_accs[k] = topk_acc.item()
|
80 |
+
return list_topk_accs # list of topk accuracies for entire batch [topk1, topk2, ... etc]
|
81 |
+
|
82 |
+
class CsvWriter:
|
83 |
+
# Save performance as a csv file
|
84 |
+
def __init__(self, out_path, fieldnames, in_path=None, debug=False):
|
85 |
+
|
86 |
+
self.out_path = out_path
|
87 |
+
self.fieldnames = fieldnames
|
88 |
+
self.debug = debug
|
89 |
+
|
90 |
+
if not debug:
|
91 |
+
if in_path is None:
|
92 |
+
with open(out_path, "w") as f:
|
93 |
+
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
94 |
+
writer.writeheader()
|
95 |
+
else:
|
96 |
+
try:
|
97 |
+
shutil.copy(in_path, out_path)
|
98 |
+
except:
|
99 |
+
with open(out_path, "w") as f:
|
100 |
+
writer = csv.DictWriter(f, fieldnames=fieldnames)
|
101 |
+
writer.writeheader()
|
102 |
+
|
103 |
+
|
104 |
+
def update(self, performance_dict):
|
105 |
+
if not self.debug:
|
106 |
+
with open(self.out_path, "a") as f:
|
107 |
+
writer = csv.DictWriter(f, fieldnames=self.fieldnames)
|
108 |
+
writer.writerow(performance_dict)
|
109 |
+
a = 0
|
110 |
+
|
111 |
+
def generate_square_subsequent_mask(sz):
|
112 |
+
# Triangular mask to avoid looking at future tokens
|
113 |
+
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
114 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
115 |
+
return mask
|
116 |
+
|
117 |
+
|
118 |
+
def logging(s, log_path, print_=True, log_=True):
|
119 |
+
# Prints log
|
120 |
+
if print_:
|
121 |
+
print(s)
|
122 |
+
if log_:
|
123 |
+
with open(log_path, 'a+') as f_log:
|
124 |
+
f_log.write(s + '\n')
|
125 |
+
|
126 |
+
def get_logger(log_path, **kwargs):
|
127 |
+
return functools.partial(logging, log_path=log_path, **kwargs)
|
128 |
+
|
129 |
+
def create_exp_dir(dir_path, debug=False):
|
130 |
+
# Create experiment directory
|
131 |
+
if debug:
|
132 |
+
print('Debug Mode : no experiment dir created')
|
133 |
+
return functools.partial(logging, log_path=None, log_=False)
|
134 |
+
else:
|
135 |
+
if not os.path.exists(dir_path):
|
136 |
+
os.makedirs(dir_path)
|
137 |
+
|
138 |
+
print('Experiment dir : {}'.format(dir_path))
|
139 |
+
|
140 |
+
return get_logger(log_path=os.path.join(dir_path, 'log.txt'))
|
141 |
+
|
142 |
+
|
143 |
+
def get_n_instruments(symbols):
|
144 |
+
# Find number of instruments
|
145 |
+
symbols_split = [s.split("_") for s in symbols]
|
146 |
+
symbols_split = [s[1] for s in symbols_split if len(s) == 3]
|
147 |
+
events = list(set(symbols_split))
|
148 |
+
return len(events)
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fluidsynth
|
2 |
+
fluid-soundfont-gm
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
torch>=2.0.0
|
3 |
+
numpy>=1.24.0
|
4 |
+
matplotlib>=3.7.0
|
5 |
+
Pillow>=10.0.0
|
6 |
+
huggingface-hub>=0.19.0
|
7 |
+
pretty-midi>=0.2.10
|
8 |
+
librosa>=0.10.0
|
9 |
+
soundfile>=0.12.0
|