Spaces:
Running
Running
Vivien
commited on
Commit
Β·
afb8825
1
Parent(s):
2b2d081
App moved to another Space
Browse files- README.md +1 -1
- app.py +1 -146
- embeddings.npy +0 -3
- embeddings2.npy +0 -3
- movies.csv +0 -3
- requirements.txt +0 -5
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Semantic Search
|
3 |
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: Semantic Search (obsolete)
|
3 |
emoji: π
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -1,147 +1,2 @@
|
|
1 |
-
import time
|
2 |
-
import re
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from transformers import AutoTokenizer, AutoModel
|
8 |
-
from tokenizers import Tokenizer, AddedToken
|
9 |
import streamlit as st
|
10 |
-
|
11 |
-
|
12 |
-
DEVICE = "cpu"
|
13 |
-
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
|
14 |
-
DESCRIPTION = """
|
15 |
-
# Semantic search
|
16 |
-
|
17 |
-
**Enter your query and hit enter**
|
18 |
-
|
19 |
-
Built with π€ Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
|
20 |
-
"""
|
21 |
-
|
22 |
-
|
23 |
-
@st.cache(
|
24 |
-
show_spinner=False,
|
25 |
-
hash_funcs={
|
26 |
-
AutoModel: lambda _: None,
|
27 |
-
AutoTokenizer: lambda _: None,
|
28 |
-
dict: lambda _: None,
|
29 |
-
},
|
30 |
-
)
|
31 |
-
def load():
|
32 |
-
models, tokenizers, embeddings = [], [], []
|
33 |
-
for model_option in MODEL_OPTIONS:
|
34 |
-
tokenizers.append(
|
35 |
-
AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
|
36 |
-
)
|
37 |
-
models.append(
|
38 |
-
AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
|
39 |
-
DEVICE
|
40 |
-
)
|
41 |
-
)
|
42 |
-
embeddings.append(np.load("embeddings.npy"))
|
43 |
-
embeddings.append(np.load("embeddings2.npy"))
|
44 |
-
df = pd.read_csv("movies.csv")
|
45 |
-
return tokenizers, models, embeddings, df
|
46 |
-
|
47 |
-
|
48 |
-
tokenizers, models, embeddings, df = load()
|
49 |
-
|
50 |
-
|
51 |
-
def pooling(model_output):
|
52 |
-
return model_output.last_hidden_state[:, 0]
|
53 |
-
|
54 |
-
|
55 |
-
def compute_embeddings(texts):
|
56 |
-
encoded_input = tokenizers[0](
|
57 |
-
texts, padding=True, truncation=True, return_tensors="pt"
|
58 |
-
).to(DEVICE)
|
59 |
-
|
60 |
-
with torch.no_grad():
|
61 |
-
model_output = models[0](**encoded_input, return_dict=True)
|
62 |
-
|
63 |
-
embeddings = pooling(model_output)
|
64 |
-
|
65 |
-
return embeddings.cpu().numpy()
|
66 |
-
|
67 |
-
|
68 |
-
def pooling2(model_output, attention_mask):
|
69 |
-
token_embeddings = model_output[0]
|
70 |
-
input_mask_expanded = (
|
71 |
-
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
72 |
-
)
|
73 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
74 |
-
input_mask_expanded.sum(1), min=1e-9
|
75 |
-
)
|
76 |
-
|
77 |
-
|
78 |
-
def compute_embeddings2(list_of_strings):
|
79 |
-
encoded_input = tokenizers[1](
|
80 |
-
list_of_strings, padding=True, truncation=True, return_tensors="pt"
|
81 |
-
).to(DEVICE)
|
82 |
-
with torch.no_grad():
|
83 |
-
model_output = models[1](**encoded_input)
|
84 |
-
sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
|
85 |
-
return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()
|
86 |
-
|
87 |
-
|
88 |
-
@st.cache(
|
89 |
-
show_spinner=False,
|
90 |
-
hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
|
91 |
-
)
|
92 |
-
def semantic_search(query, model_id):
|
93 |
-
start = time.time()
|
94 |
-
if len(query.strip()) == 0:
|
95 |
-
return ""
|
96 |
-
if "[Similar:" not in query:
|
97 |
-
if model_id == 0:
|
98 |
-
query_embedding = compute_embeddings([query])
|
99 |
-
else:
|
100 |
-
query_embedding = compute_embeddings2([query])
|
101 |
-
else:
|
102 |
-
match = re.match(r"\[Similar:(\d{1,5}).*", query)
|
103 |
-
if match:
|
104 |
-
idx = int(match.groups()[0])
|
105 |
-
query_embedding = embeddings[model_id][idx : idx + 1, :]
|
106 |
-
if query_embedding.shape[0] == 0:
|
107 |
-
return ""
|
108 |
-
else:
|
109 |
-
return ""
|
110 |
-
indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
|
111 |
-
-1:-11:-1
|
112 |
-
]
|
113 |
-
if len(indices) == 0:
|
114 |
-
return ""
|
115 |
-
result = "<ol>"
|
116 |
-
for i in indices:
|
117 |
-
result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
|
118 |
-
result += f"<a id='{i}' href='#'>Similar movies</a></li>"
|
119 |
-
delay = "%.3f" % (time.time() - start)
|
120 |
-
return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"
|
121 |
-
|
122 |
-
|
123 |
-
st.sidebar.markdown(DESCRIPTION)
|
124 |
-
|
125 |
-
model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
|
126 |
-
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1
|
127 |
-
|
128 |
-
if "query" in st.session_state:
|
129 |
-
query = st.text_input("", value=st.session_state["query"])
|
130 |
-
else:
|
131 |
-
query = st.text_input("", value="time travel")
|
132 |
-
|
133 |
-
clicked = click_detector(semantic_search(query, model_id))
|
134 |
-
|
135 |
-
if clicked != "":
|
136 |
-
st.markdown(clicked)
|
137 |
-
change_query = False
|
138 |
-
if "last_clicked" not in st.session_state:
|
139 |
-
st.session_state["last_clicked"] = clicked
|
140 |
-
change_query = True
|
141 |
-
else:
|
142 |
-
if clicked != st.session_state["last_clicked"]:
|
143 |
-
st.session_state["last_clicked"] = clicked
|
144 |
-
change_query = True
|
145 |
-
if change_query:
|
146 |
-
st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
|
147 |
-
st.experimental_rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
st.markdown("Web app moved [here](https://huggingface.co/spaces/vivien/semantic-search2)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embeddings.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:64495712bf1903dd04604cd5641f5b521912d8938339e9e9e3071dad8952b34a
|
3 |
-
size 134876288
|
|
|
|
|
|
|
|
embeddings2.npy
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:136aa7ffd5630d19dc88f1e779dbeb04011ef918ac3fba2148a8f5d58303d736
|
3 |
-
size 134876288
|
|
|
|
|
|
|
|
movies.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1da4fb07829b3f57bce3fa663641c50b3d3e65cdf949f6e6f340960a5acc1005
|
3 |
-
size 16293996
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +0,0 @@
|
|
1 |
-
torch
|
2 |
-
transformers
|
3 |
-
numpy
|
4 |
-
pandas
|
5 |
-
st-click-detector
|
|
|
|
|
|
|
|
|
|
|
|