Spaces:
Sleeping
Sleeping
| \section{Experimental Results} | |
| \frame{\sectionpage} | |
| \begin{frame}{Nuclei Channel: Forces} | |
| \only<-3>{\uncover<+->{\begin{equation*} | |
| f(t) = \cos(\omega_0 t)e^{-\pi t^2} | |
| \end{equation*}} | |
| \uncover<+->{\begin{equation*} | |
| \widehat{f}(\omega) = \frac{e^{-\frac{(\omega - \omega_0)^2}{4\pi}} + e^{-\frac{(\omega + \omega_0)^2}{4\pi}}}{2\sqrt{2\pi}} | |
| \end{equation*}} | |
| \uncover<+->{\begin{equation*} | |
| \omega = 2\pi\nu | |
| \end{equation*}}} | |
| \only<4>{\begin{equation*} | |
| f(t) = \cos(2\pi\nu_0 t)e^{-\pi t^2} | |
| \end{equation*} | |
| \begin{equation*} | |
| \widehat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}} | |
| \end{equation*}} | |
| \end{frame} | |
| \begin{frame}{Nuclei Channel: $T_{eq}$} | |
| \begin{equation*} | |
| f(t) = \cos(2\pi\nu_0 t)e^{-\pi t^2} | |
| \end{equation*} | |
| \centering | |
| \includegraphics[height = 0.7 \textheight]{images/Pulse1.pdf} | |
| \end{frame} | |
| \begin{frame}{Nuclei Channel: Phase Space} | |
| \begin{equation*} | |
| \widehat{f}(\nu) = \frac{e^{-\pi(\nu - \nu_0)^2} + e^{-\pi(\nu + \nu_0)^2}}{2\sqrt{2\pi}} | |
| \end{equation*} | |
| \centering | |
| \includegraphics[height = 0.65 \textheight]{images/Pulse1-Fourier.pdf} | |
| \end{frame} | |
| \begin{frame}{Membrane Channel: Forces} | |
| \uncover<+->{\begin{equation*} | |
| f(t) = e^{i\omega_0 t} = \cos(\omega_0 t) + i \sin(\omega_0 t) | |
| \end{equation*}} | |
| \uncover<+->{\begin{equation*} | |
| \widehat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{i\omega_0 t} e^{-i \omega t} \dd{t} | |
| \end{equation*}} | |
| \end{frame} | |
| \begin{frame}{Membrane Channel: $T_{eq}$} | |
| \uncover<+->{\begin{equation*} | |
| f(t) = e^{i\omega_0 t} | |
| \end{equation*}} | |
| \uncover<+->{\begin{equation*} | |
| e^{i\omega_0 t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f}(\omega) e^{i \omega t} \dd{\omega} | |
| \end{equation*}} | |
| \uncover<+->{\begin{equation*} | |
| \widehat{f}(\omega) = \sqrt{2\pi} \dirac{\omega - \omega_0} | |
| \end{equation*}} | |
| \end{frame} | |
| \begin{frame}{Membrane Channel: Phase Space} | |
| \begin{equation*} | |
| f(t) = \cos(\omega_0 t) = \frac{e^{i\omega_0t} + e^{-i\omega_0t}}{2} | |
| \end{equation*} | |
| \centering | |
| \includegraphics[height = 0.65 \textheight]{images/Pulse2.pdf} | |
| \end{frame} | |