Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain_community.llms import LlamaCpp
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.schema.runnable import RunnablePassthrough
|
8 |
+
from langchain.schema.output_parser import StrOutputParser
|
9 |
+
from langchain.prompts import ChatPromptTemplate
|
10 |
+
import gradio as gr
|
11 |
+
import os
|
12 |
+
|
13 |
+
# Set your Hugging Face API key
|
14 |
+
os.environ['HF_API_KEY']
|
15 |
+
api_key = os.getenv('HF_API_KEY')
|
16 |
+
if api_key is None:
|
17 |
+
raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
|
18 |
+
|
19 |
+
# Load documents from a directory
|
20 |
+
loader = PyPDFDirectoryLoader("/content/drive/MyDrive/HealthCareData/")
|
21 |
+
docs = loader.load()
|
22 |
+
|
23 |
+
# Split documents into chunks
|
24 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
25 |
+
chunks = text_splitter.split_documents(docs)
|
26 |
+
|
27 |
+
# Create embeddings and vector store
|
28 |
+
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
|
29 |
+
vectorstore = Chroma.from_documents(chunks, embeddings)
|
30 |
+
|
31 |
+
# Create a retriever
|
32 |
+
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
33 |
+
|
34 |
+
# Load the LLM (LlamaCpp)
|
35 |
+
llm = LlamaCpp(
|
36 |
+
model_path='/content/drive/MyDrive/HealthCareData/mistral-7b-instruct-v0.1.Q6_K.gguf',
|
37 |
+
temperature=0.2,
|
38 |
+
max_tokens=2048,
|
39 |
+
top_p=1
|
40 |
+
)
|
41 |
+
|
42 |
+
# Define the prompt template
|
43 |
+
template = """
|
44 |
+
You are a Medical Assistant that follows the instructions and generates accurate responses based on the query and the context provided. Please be truthful and give direct answers.
|
45 |
+
|
46 |
+
{query}
|
47 |
+
"""
|
48 |
+
|
49 |
+
prompt = ChatPromptTemplate.from_template(template)
|
50 |
+
|
51 |
+
# Create the retrieval chain
|
52 |
+
retrieval_chain = (
|
53 |
+
{"context": retriever, "query": RunnablePassthrough()}
|
54 |
+
| prompt
|
55 |
+
| llm
|
56 |
+
| StrOutputParser()
|
57 |
+
)
|
58 |
+
|
59 |
+
# Define the chat function for Gradio
|
60 |
+
def chat(user_input):
|
61 |
+
if user_input.lower() == 'exit':
|
62 |
+
return "Exiting..."
|
63 |
+
if not user_input.strip():
|
64 |
+
return "Please enter a valid query."
|
65 |
+
result = retrieval_chain.invoke(user_input)
|
66 |
+
return result
|
67 |
+
|
68 |
+
# Create Gradio interface with improved design
|
69 |
+
iface = gr.Interface(
|
70 |
+
fn=chat,
|
71 |
+
inputs=gr.Textbox(label="Your Query", placeholder="Type your question here...", lines=2),
|
72 |
+
outputs=gr.Textbox(label="Response"),
|
73 |
+
title="π©Ί BioMistral Medical Chatbot",
|
74 |
+
description="π€ Ask me any healthcare or biology-related queries!",
|
75 |
+
theme="soft",
|
76 |
+
live=True,
|
77 |
+
css="""
|
78 |
+
body {
|
79 |
+
background-color: #f0f4f8;
|
80 |
+
color: #333;
|
81 |
+
}
|
82 |
+
.gradio-container {
|
83 |
+
border-radius: 12px;
|
84 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);
|
85 |
+
background: #ffffff;
|
86 |
+
padding: 20px;
|
87 |
+
}
|
88 |
+
input, textarea {
|
89 |
+
border-radius: 8px;
|
90 |
+
border: 1px solid #ddd;
|
91 |
+
padding: 10px;
|
92 |
+
}
|
93 |
+
button {
|
94 |
+
background-color: #007bff;
|
95 |
+
color: white;
|
96 |
+
border-radius: 8px;
|
97 |
+
padding: 10px 15px;
|
98 |
+
border: none;
|
99 |
+
transition: 0.3s;
|
100 |
+
}
|
101 |
+
button:hover {
|
102 |
+
background-color: #0056b3;
|
103 |
+
}
|
104 |
+
"""
|
105 |
+
)
|
106 |
+
|
107 |
+
# Launch the Gradio app
|
108 |
+
iface.launch()
|