Spaces:
Sleeping
Sleeping
File size: 948 Bytes
164487e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
# Import required libraries
import torch
import gradio as gr
from PIL import Image
# Load the pretrained YOLOv5 model
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True)
# Function to process the image and return detections
def detect_objects(image):
# Perform inference on the uploaded image
results = model(image)
# Plot results on the image (YOLOv5 provides results with bounding boxes, class names, and confidence scores)
results_img = results.render()[0] # Render the detections on the image
# Convert to a PIL Image for compatibility with Gradio
return Image.fromarray(results_img)
# Define the Gradio interface
interface = gr.Interface(
fn=detect_objects,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Object Detection App",
description="Upload an image to detect objects using the YOLOv5 model."
)
# Launch the Gradio app
interface.launch() |