Spaces:
Runtime error
Runtime error
File size: 12,637 Bytes
75618ca 87ad8f4 e05bd58 75618ca 5a42864 75618ca 41716f6 75618ca bcff9ec 75618ca 87ad8f4 75618ca 87ad8f4 75618ca 87ad8f4 75618ca 32a09c2 75618ca b6f2278 75618ca 43fd9e1 75618ca 697a8e3 75618ca 1f225af 75618ca bcff9ec 75618ca bcff9ec 75618ca bcff9ec 75618ca 0b11729 57067dc 0b11729 bcff9ec de9e035 75618ca de9e035 75618ca bcff9ec 75618ca bcff9ec 75618ca bcff9ec 75618ca bcff9ec 75618ca de9e035 75618ca bcff9ec de9e035 75618ca 87ad8f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import requests
import os
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
from huggingface_hub import hf_hub_download
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.hed import HEDdetector, nms
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
st.set_page_config(
page_title="ControllNet",
page_icon="🖥️",
layout="wide",
initial_sidebar_state="expanded"
)
save_memory = False
@st.experimental_singleton
def load_model():
model_path = hf_hub_download('lllyasviel/ControlNet', 'models/control_sd15_scribble.pth')
model = create_model('./models/cldm_v15.yaml').cpu()
if torch.cuda.is_available():
model.load_state_dict(load_state_dict(model_path, location='cuda'))
model = model.cuda()
else:
model.load_state_dict(load_state_dict(model_path, location='cpu'))
return model
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
with torch.no_grad():
input_image = HWC3(input_image[:, :, 0])
detected_map = apply_hed(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
if torch.cuda.is_available():
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
else:
control = torch.from_numpy(detected_map.copy()).float() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 2147483647)
seed_everything(seed)
if save_memory:
model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
# return [255 - detected_map] + results
return results
@st.experimental_memo
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
model = load_model()
ddim_sampler = DDIMSampler(model)
apply_hed = HEDdetector()
def main():
lottie_penguin = load_lottieurl('https://assets5.lottiefiles.com/datafiles/B8q1AyJ5t1wb5S8a2ggTqYNxS1WiKN9mjS76TBpw/articulation/articulation.json')
st.header('Draw and generate image with ControlNet')
with st.sidebar:
st_lottie(lottie_penguin, height=200)
choose = option_menu("Generate image", ["Canvas", "Upload"],
icons=['file-plus', 'cloud-upload'],
menu_icon="infinity", default_index=0,
styles={
"container": {"padding": ".0rem", "font-size": "14px"},
"nav-link-selected": {"color": "#000000", "font-size": "16px"},
}
)
st.sidebar.markdown(
"""
___
<p style='text-align: center'>
ControlNet is as fast as fine-tuning a diffusion model to support additional input conditions
<br/>
<a href="https://arxiv.org/abs/2302.05543" target="_blank">Article</a>
</p>
<p style='text-align: center; font-size: 14px;'>
Spaces creating by
<br/>
<a href="https://www.linkedin.com/in/vumichien/" target="_blank">Chien Vu</a>
<br/>
<img src='https://visitor-badge.glitch.me/badge?page_id=Canvas.ControlNet' alt='visitor badge'>
</p>
""",
unsafe_allow_html=True,
)
if choose == 'Upload':
st.info("Upload your own scribbles, fill the prompt and enjoy")
with st.form(key='generate_form'):
upload_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"])
prompt = st.text_input(label="Prompt", placeholder='Type your instruction')
col11, col12 = st.columns(2)
with st.expander('Advanced option', expanded=False):
col21, col22 = st.columns(2)
with col21:
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
guess_mode = st.checkbox(label='Guess Mode', value=False)
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
with col22:
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
seed = st.number_input(label="Seed", min_value=-1, value=-1)
eta = st.number_input(label="eta (DDIM)", value=0.0)
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = st.text_input(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
generate_button = st.form_submit_button(label='Generate Image')
if upload_file:
input_image = np.asarray(Image.open(upload_file).convert("RGB"))
print("input_image", input_image.shape)
if generate_button:
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
print("input_image", input_image.shape)
print("results", results[0].shape)
H, W, C = input_image.shape
output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
col11.image(input_image, channels='RGB', width=None, clamp=False, caption='Input image')
col12.image(output_image, channels='RGB', width=None, clamp=False, caption='Generated image')
elif choose == 'Canvas':
st.info("Step 1a. Draw your image with canvas"
" \n Step 1b. You also can upload image directly by select Upload in side bar"
" \n Step 2. Input prompt to instruct model (You can also change some config with advanced option if need)"
" \n Step 3. Generate and enjoy")
with st.form(key='canvas_generate_form'):
# Specify canvas parameters in application
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
realtime_update = st.sidebar.checkbox("Update in realtime", True)
# Create a canvas component
col31, col32 = st.columns(2)
with col31:
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
background_image=None,
update_streamlit=realtime_update,
height=512,
width=512,
drawing_mode="freedraw",
point_display_radius=0,
key="canvas",
)
prompt = st.text_input(label="Prompt", placeholder='Type your instruction')
with st.expander('Advanced option', expanded=False):
col41, col42 = st.columns(2)
with col41:
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
guess_mode = st.checkbox(label='Guess Mode', value=False)
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
with col42:
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
seed = st.number_input(label="Seed", min_value=-1, value=-1)
eta = st.number_input(label="eta (DDIM)", value=0.0)
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = st.text_input(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
# Generate image from canvas
generate_button = st.form_submit_button(label='Generate Image')
if generate_button:
if canvas_result.image_data is not None:
input_image = canvas_result.image_data
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
H, W, C = input_image.shape
output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
col32.image(output_image, channels='RGB', width=None, clamp=True, caption='Generated image')
# Image gallery
with st.expander('Image gallery', expanded=True):
col01, col02, = st.columns(2)
with col01:
st.image('demo/example_1.jpg', caption="Sport car")
st.image('demo/example_2.jpg', caption="Dog house")
st.image('demo/example_3.jpg', caption="Guitar")
with col02:
st.image('demo/example_4.jpg', caption="Sport car")
st.image('demo/example_5.jpg', caption="Dog house")
st.image('demo/example_6.jpg', caption="Guitar")
if __name__ == '__main__':
main()
|