from PIL import Image import streamlit as st from streamlit_drawable_canvas import st_canvas from streamlit_lottie import st_lottie from streamlit_option_menu import option_menu import requests import os import cv2 import einops import gradio as gr import numpy as np import torch import random from huggingface_hub import hf_hub_download from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.hed import HEDdetector, nms from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler st.set_page_config( page_title="ControllNet", page_icon="🖥️", layout="wide", initial_sidebar_state="expanded" ) save_memory = False @st.experimental_singleton def load_model(): model_path = hf_hub_download('lllyasviel/ControlNet', 'models/control_sd15_scribble.pth') model = create_model('./models/cldm_v15.yaml').cpu() if torch.cuda.is_available(): model.load_state_dict(load_state_dict(model_path, location='cuda')) model = model.cuda() else: model.load_state_dict(load_state_dict(model_path, location='cpu')) return model def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta): with torch.no_grad(): input_image = HWC3(input_image[:, :, 0]) detected_map = apply_hed(resize_image(input_image, detect_resolution)) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 if torch.cuda.is_available(): control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 else: control = torch.from_numpy(detected_map.copy()).float() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 2147483647) seed_everything(seed) if save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] # return [255 - detected_map] + results return results @st.experimental_memo def load_lottieurl(url: str): r = requests.get(url) if r.status_code != 200: return None return r.json() model = load_model() ddim_sampler = DDIMSampler(model) apply_hed = HEDdetector() def main(): lottie_penguin = load_lottieurl('https://assets5.lottiefiles.com/datafiles/B8q1AyJ5t1wb5S8a2ggTqYNxS1WiKN9mjS76TBpw/articulation/articulation.json') st.header('Draw and generate image with ControlNet') with st.sidebar: st_lottie(lottie_penguin, height=200) choose = option_menu("Generate image", ["Canvas", "Upload"], icons=['file-plus', 'cloud-upload'], menu_icon="infinity", default_index=0, styles={ "container": {"padding": ".0rem", "font-size": "14px"}, "nav-link-selected": {"color": "#000000", "font-size": "16px"}, } ) st.sidebar.markdown( """ ___

ControlNet is as fast as fine-tuning a diffusion model to support additional input conditions
Article

Spaces creating by
Chien Vu
visitor badge

""", unsafe_allow_html=True, ) if choose == 'Upload': st.info("Upload your own scribbles, fill the prompt and enjoy") with st.form(key='generate_form'): upload_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"]) prompt = st.text_input(label="Prompt", placeholder='Type your instruction') col11, col12 = st.columns(2) with st.expander('Advanced option', expanded=False): col21, col22 = st.columns(2) with col21: image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256) strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01) guess_mode = st.checkbox(label='Guess Mode', value=False) detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1) ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1) with col22: scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1) seed = st.number_input(label="Seed", min_value=-1, value=-1) eta = st.number_input(label="eta (DDIM)", value=0.0) a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed') n_prompt = st.text_input(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') generate_button = st.form_submit_button(label='Generate Image') if upload_file: input_image = np.asarray(Image.open(upload_file).convert("RGB")) print("input_image", input_image.shape) if generate_button: with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."): results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) print("input_image", input_image.shape) print("results", results[0].shape) H, W, C = input_image.shape output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA) col11.image(input_image, channels='RGB', width=None, clamp=False, caption='Input image') col12.image(output_image, channels='RGB', width=None, clamp=False, caption='Generated image') elif choose == 'Canvas': st.info("Step 1a. Draw your image with canvas" " \n Step 1b. You also can upload image directly by select Upload in side bar" " \n Step 2. Input prompt to instruct model (You can also change some config with advanced option if need)" " \n Step 3. Generate and enjoy") with st.form(key='canvas_generate_form'): # Specify canvas parameters in application stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3) stroke_color = st.sidebar.color_picker("Stroke color hex: ") bg_color = st.sidebar.color_picker("Background color hex: ", "#eee") realtime_update = st.sidebar.checkbox("Update in realtime", True) # Create a canvas component col31, col32 = st.columns(2) with col31: canvas_result = st_canvas( fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity stroke_width=stroke_width, stroke_color=stroke_color, background_color=bg_color, background_image=None, update_streamlit=realtime_update, height=512, width=512, drawing_mode="freedraw", point_display_radius=0, key="canvas", ) prompt = st.text_input(label="Prompt", placeholder='Type your instruction') with st.expander('Advanced option', expanded=False): col41, col42 = st.columns(2) with col41: image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256) strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01) guess_mode = st.checkbox(label='Guess Mode', value=False) detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1) ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1) with col42: scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1) seed = st.number_input(label="Seed", min_value=-1, value=-1) eta = st.number_input(label="eta (DDIM)", value=0.0) a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed') n_prompt = st.text_input(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality') # Generate image from canvas generate_button = st.form_submit_button(label='Generate Image') if generate_button: if canvas_result.image_data is not None: input_image = canvas_result.image_data with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."): results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta) H, W, C = input_image.shape output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA) col32.image(output_image, channels='RGB', width=None, clamp=True, caption='Generated image') # Image gallery with st.expander('Image gallery', expanded=True): col01, col02, = st.columns(2) with col01: st.image('demo/example_1.jpg', caption="Sport car") st.image('demo/example_2.jpg', caption="Dog house") st.image('demo/example_3.jpg', caption="Guitar") with col02: st.image('demo/example_4.jpg', caption="Sport car") st.image('demo/example_5.jpg', caption="Dog house") st.image('demo/example_6.jpg', caption="Guitar") if __name__ == '__main__': main()