Spaces:
Runtime error
Runtime error
| # # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py | |
| import html | |
| import inspect | |
| import math | |
| import re | |
| import urllib.parse as ul | |
| from typing import Callable, Dict, List, Optional, Tuple, Union | |
| from abc import ABC, abstractmethod | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import Tensor | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from diffusers.schedulers import DPMSolverMultistepScheduler | |
| from diffusers.utils import ( | |
| BACKENDS_MAPPING, | |
| deprecate, | |
| is_bs4_available, | |
| is_ftfy_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from xora.models.transformers.transformer3d import Transformer3DModel | |
| from xora.models.transformers.symmetric_patchifier import Patchifier | |
| from xora.models.autoencoders.vae_encode import get_vae_size_scale_factor, vae_decode, vae_encode | |
| from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
| from xora.schedulers.rf import TimestepShifter | |
| from xora.utils.conditioning_method import ConditioningMethod | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| if is_bs4_available(): | |
| from bs4 import BeautifulSoup | |
| if is_ftfy_available(): | |
| import ftfy | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import PixArtAlphaPipeline | |
| >>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too. | |
| >>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) | |
| >>> # Enable memory optimizations. | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> prompt = "A small cactus with a happy face in the Sahara desert." | |
| >>> image = pipe(prompt).images[0] | |
| ``` | |
| """ | |
| ASPECT_RATIO_1024_BIN = { | |
| "0.25": [512.0, 2048.0], | |
| "0.28": [512.0, 1856.0], | |
| "0.32": [576.0, 1792.0], | |
| "0.33": [576.0, 1728.0], | |
| "0.35": [576.0, 1664.0], | |
| "0.4": [640.0, 1600.0], | |
| "0.42": [640.0, 1536.0], | |
| "0.48": [704.0, 1472.0], | |
| "0.5": [704.0, 1408.0], | |
| "0.52": [704.0, 1344.0], | |
| "0.57": [768.0, 1344.0], | |
| "0.6": [768.0, 1280.0], | |
| "0.68": [832.0, 1216.0], | |
| "0.72": [832.0, 1152.0], | |
| "0.78": [896.0, 1152.0], | |
| "0.82": [896.0, 1088.0], | |
| "0.88": [960.0, 1088.0], | |
| "0.94": [960.0, 1024.0], | |
| "1.0": [1024.0, 1024.0], | |
| "1.07": [1024.0, 960.0], | |
| "1.13": [1088.0, 960.0], | |
| "1.21": [1088.0, 896.0], | |
| "1.29": [1152.0, 896.0], | |
| "1.38": [1152.0, 832.0], | |
| "1.46": [1216.0, 832.0], | |
| "1.67": [1280.0, 768.0], | |
| "1.75": [1344.0, 768.0], | |
| "2.0": [1408.0, 704.0], | |
| "2.09": [1472.0, 704.0], | |
| "2.4": [1536.0, 640.0], | |
| "2.5": [1600.0, 640.0], | |
| "3.0": [1728.0, 576.0], | |
| "4.0": [2048.0, 512.0], | |
| } | |
| ASPECT_RATIO_512_BIN = { | |
| "0.25": [256.0, 1024.0], | |
| "0.28": [256.0, 928.0], | |
| "0.32": [288.0, 896.0], | |
| "0.33": [288.0, 864.0], | |
| "0.35": [288.0, 832.0], | |
| "0.4": [320.0, 800.0], | |
| "0.42": [320.0, 768.0], | |
| "0.48": [352.0, 736.0], | |
| "0.5": [352.0, 704.0], | |
| "0.52": [352.0, 672.0], | |
| "0.57": [384.0, 672.0], | |
| "0.6": [384.0, 640.0], | |
| "0.68": [416.0, 608.0], | |
| "0.72": [416.0, 576.0], | |
| "0.78": [448.0, 576.0], | |
| "0.82": [448.0, 544.0], | |
| "0.88": [480.0, 544.0], | |
| "0.94": [480.0, 512.0], | |
| "1.0": [512.0, 512.0], | |
| "1.07": [512.0, 480.0], | |
| "1.13": [544.0, 480.0], | |
| "1.21": [544.0, 448.0], | |
| "1.29": [576.0, 448.0], | |
| "1.38": [576.0, 416.0], | |
| "1.46": [608.0, 416.0], | |
| "1.67": [640.0, 384.0], | |
| "1.75": [672.0, 384.0], | |
| "2.0": [704.0, 352.0], | |
| "2.09": [736.0, 352.0], | |
| "2.4": [768.0, 320.0], | |
| "2.5": [800.0, 320.0], | |
| "3.0": [864.0, 288.0], | |
| "4.0": [1024.0, 256.0], | |
| } | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class VideoPixArtAlphaPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using PixArt-Alpha. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`T5EncoderModel`]): | |
| Frozen text-encoder. PixArt-Alpha uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
| tokenizer (`T5Tokenizer`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| transformer ([`Transformer2DModel`]): | |
| A text conditioned `Transformer2DModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| """ | |
| bad_punct_regex = re.compile( | |
| r"[" | |
| + "#®•©™&@·º½¾¿¡§~" | |
| + r"\)" | |
| + r"\(" | |
| + r"\]" | |
| + r"\[" | |
| + r"\}" | |
| + r"\{" | |
| + r"\|" | |
| + "\\" | |
| + r"\/" | |
| + r"\*" | |
| + r"]{1,}" | |
| ) # noqa | |
| _optional_components = ["tokenizer", "text_encoder"] | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKL, | |
| transformer: Transformer3DModel, | |
| scheduler: DPMSolverMultistepScheduler, | |
| patchifier: Patchifier, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| patchifier=patchifier, | |
| ) | |
| self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(self.vae) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py | |
| def mask_text_embeddings(self, emb, mask): | |
| if emb.shape[0] == 1: | |
| keep_index = mask.sum().item() | |
| return emb[:, :, :keep_index, :], keep_index | |
| else: | |
| masked_feature = emb * mask[:, None, :, None] | |
| return masked_feature, emb.shape[2] | |
| # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| clean_caption: bool = False, | |
| **kwargs, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
| PixArt-Alpha, this should be "". | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
| string. | |
| clean_caption (bool, defaults to `False`): | |
| If `True`, the function will preprocess and clean the provided caption before encoding. | |
| """ | |
| if "mask_feature" in kwargs: | |
| deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
| deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # See Section 3.1. of the paper. | |
| # FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config | |
| max_length = 128 # TPU supports only lengths multiple of 128 | |
| if prompt_embeds is None: | |
| prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {max_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask | |
| prompt_attention_mask = prompt_attention_mask.to(device) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) | |
| prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens = [negative_prompt] * batch_size | |
| uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_attention_mask = uncond_input.attention_mask | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_images_per_prompt) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1) | |
| else: | |
| negative_prompt_embeds = None | |
| negative_prompt_attention_mask = None | |
| return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
| f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
| f" {negative_prompt_attention_mask.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
| def _text_preprocessing(self, text, clean_caption=False): | |
| if clean_caption and not is_bs4_available(): | |
| logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) | |
| logger.warn("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if clean_caption and not is_ftfy_available(): | |
| logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) | |
| logger.warn("Setting `clean_caption` to False...") | |
| clean_caption = False | |
| if not isinstance(text, (tuple, list)): | |
| text = [text] | |
| def process(text: str): | |
| if clean_caption: | |
| text = self._clean_caption(text) | |
| text = self._clean_caption(text) | |
| else: | |
| text = text.lower().strip() | |
| return text | |
| return [process(t) for t in text] | |
| # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
| def _clean_caption(self, caption): | |
| caption = str(caption) | |
| caption = ul.unquote_plus(caption) | |
| caption = caption.strip().lower() | |
| caption = re.sub("<person>", "person", caption) | |
| # urls: | |
| caption = re.sub( | |
| r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| caption = re.sub( | |
| r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa | |
| "", | |
| caption, | |
| ) # regex for urls | |
| # html: | |
| caption = BeautifulSoup(caption, features="html.parser").text | |
| # @<nickname> | |
| caption = re.sub(r"@[\w\d]+\b", "", caption) | |
| # 31C0—31EF CJK Strokes | |
| # 31F0—31FF Katakana Phonetic Extensions | |
| # 3200—32FF Enclosed CJK Letters and Months | |
| # 3300—33FF CJK Compatibility | |
| # 3400—4DBF CJK Unified Ideographs Extension A | |
| # 4DC0—4DFF Yijing Hexagram Symbols | |
| # 4E00—9FFF CJK Unified Ideographs | |
| caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
| caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
| caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
| caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
| caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
| caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
| caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
| ####################################################### | |
| # все виды тире / all types of dash --> "-" | |
| caption = re.sub( | |
| r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa | |
| "-", | |
| caption, | |
| ) | |
| # кавычки к одному стандарту | |
| caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
| caption = re.sub(r"[‘’]", "'", caption) | |
| # " | |
| caption = re.sub(r""?", "", caption) | |
| # & | |
| caption = re.sub(r"&", "", caption) | |
| # ip adresses: | |
| caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
| # article ids: | |
| caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
| # \n | |
| caption = re.sub(r"\\n", " ", caption) | |
| # "#123" | |
| caption = re.sub(r"#\d{1,3}\b", "", caption) | |
| # "#12345.." | |
| caption = re.sub(r"#\d{5,}\b", "", caption) | |
| # "123456.." | |
| caption = re.sub(r"\b\d{6,}\b", "", caption) | |
| # filenames: | |
| caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
| # | |
| caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
| caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
| caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
| caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
| # this-is-my-cute-cat / this_is_my_cute_cat | |
| regex2 = re.compile(r"(?:\-|\_)") | |
| if len(re.findall(regex2, caption)) > 3: | |
| caption = re.sub(regex2, " ", caption) | |
| caption = ftfy.fix_text(caption) | |
| caption = html.unescape(html.unescape(caption)) | |
| caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
| caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
| caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
| caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
| caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
| caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
| caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
| caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
| caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
| caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
| caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
| caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
| caption = re.sub(r"\s+", " ", caption) | |
| caption.strip() | |
| caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
| caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
| caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
| caption = re.sub(r"^\.\S+$", "", caption) | |
| return caption.strip() | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents( | |
| self, batch_size, num_latent_channels, num_patches, dtype, device, generator, latents=None, latents_mask=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_patches // math.prod(self.patchifier.patch_size), | |
| num_latent_channels, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| elif latents_mask is not None: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = latents * latents_mask[..., None] + noise * (1 - latents_mask[..., None]) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: | |
| """Returns binned height and width.""" | |
| ar = float(height / width) | |
| closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
| default_hw = ratios[closest_ratio] | |
| return int(default_hw[0]), int(default_hw[1]) | |
| def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: | |
| n_frames, orig_height, orig_width = samples.shape[-3:] | |
| # Check if resizing is needed | |
| if orig_height != new_height or orig_width != new_width: | |
| ratio = max(new_height / orig_height, new_width / orig_width) | |
| resized_width = int(orig_width * ratio) | |
| resized_height = int(orig_height * ratio) | |
| # Resize | |
| samples = rearrange(samples, "b c n h w -> (b n) c h w") | |
| samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False) | |
| samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames) | |
| # Center Crop | |
| start_x = (resized_width - new_width) // 2 | |
| end_x = start_x + new_width | |
| start_y = (resized_height - new_height) // 2 | |
| end_y = start_y + new_height | |
| samples = samples[..., start_y:end_y, start_x:end_x] | |
| return samples | |
| def __call__( | |
| self, | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| frame_rate: float, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: str = "", | |
| num_inference_steps: int = 20, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 4.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| clean_caption: bool = True, | |
| media_items: Optional[torch.FloatTensor] = None, | |
| **kwargs, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
| timesteps are used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 4.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The width in pixels of the generated image. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not | |
| provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated attention mask for negative text embeddings. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| clean_caption (`bool`, *optional*, defaults to `True`): | |
| Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
| be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
| prompt. | |
| use_resolution_binning (`bool` defaults to `True`): | |
| If set to `True`, the requested height and width are first mapped to the closest resolutions using | |
| `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to | |
| the requested resolution. Useful for generating non-square images. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images | |
| """ | |
| if "mask_feature" in kwargs: | |
| deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
| deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
| is_video = kwargs.get("is_video", False) | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) | |
| # 2. Default height and width to transformer | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| clean_caption=clean_caption, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) | |
| # 3b. Encode and prepare conditioning data | |
| self.video_scale_factor = self.video_scale_factor if is_video else 1 | |
| conditioning_method = kwargs.get("conditioning_method", None) | |
| vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) | |
| init_latents, conditioning_mask = self.prepare_conditioning( | |
| media_items, num_frames, height, width, conditioning_method, vae_per_channel_normalize | |
| ) | |
| # 4. Prepare latents. | |
| latent_height = height // self.vae_scale_factor | |
| latent_width = width // self.vae_scale_factor | |
| latent_num_frames = num_frames // self.video_scale_factor | |
| if isinstance(self.vae, CausalVideoAutoencoder) and is_video: | |
| latent_num_frames += 1 | |
| latent_frame_rate = frame_rate / self.video_scale_factor | |
| num_latent_patches = latent_height * latent_width * latent_num_frames | |
| latents = self.prepare_latents( | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_latent_channels=self.transformer.config.in_channels, | |
| num_patches=num_latent_patches, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=init_latents, | |
| latents_mask=conditioning_mask, | |
| ) | |
| if conditioning_mask is not None and is_video: | |
| assert num_images_per_prompt == 1 | |
| conditioning_mask = torch.cat([conditioning_mask] * 2) if do_classifier_free_guidance else conditioning_mask | |
| # 5. Prepare timesteps | |
| retrieve_timesteps_kwargs = {} | |
| if isinstance(self.scheduler, TimestepShifter): | |
| retrieve_timesteps_kwargs["samples"] = latents | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| latent_frame_rates = ( | |
| torch.ones(latent_model_input.shape[0], 1, device=latent_model_input.device) * latent_frame_rate | |
| ) | |
| current_timestep = t | |
| if not torch.is_tensor(current_timestep): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = latent_model_input.device.type == "mps" | |
| if isinstance(current_timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
| elif len(current_timestep.shape) == 0: | |
| current_timestep = current_timestep[None].to(latent_model_input.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| current_timestep = current_timestep.expand(latent_model_input.shape[0]).unsqueeze(-1) | |
| scale_grid = ( | |
| (1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor) | |
| if self.transformer.use_rope | |
| else None | |
| ) | |
| indices_grid = self.patchifier.get_grid( | |
| orig_num_frames=latent_num_frames, | |
| orig_height=latent_height, | |
| orig_width=latent_width, | |
| batch_size=latent_model_input.shape[0], | |
| scale_grid=scale_grid, | |
| device=latents.device, | |
| ) | |
| if conditioning_mask is not None: | |
| current_timestep = current_timestep * (1 - conditioning_mask) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| latent_model_input.to(self.transformer.dtype), | |
| indices_grid, | |
| encoder_hidden_states=prompt_embeds.to(self.transformer.dtype), | |
| encoder_attention_mask=prompt_attention_mask, | |
| timestep=current_timestep, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| current_timestep, _ = current_timestep.chunk(2) | |
| # learned sigma | |
| if self.transformer.config.out_channels // 2 == self.transformer.config.in_channels: | |
| noise_pred = noise_pred.chunk(2, dim=1)[0] | |
| # compute previous image: x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t if current_timestep is None else current_timestep, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback_on_step_end is not None: | |
| callback_on_step_end(self, i, t, {}) | |
| latents = self.patchifier.unpatchify( | |
| latents=latents, | |
| output_height=latent_height, | |
| output_width=latent_width, | |
| output_num_frames=latent_num_frames, | |
| out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size), | |
| ) | |
| if output_type != "latent": | |
| image = vae_decode( | |
| latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"] | |
| ) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| else: | |
| image = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
| def prepare_conditioning( | |
| self, | |
| media_items: torch.Tensor, | |
| num_frames: int, | |
| height: int, | |
| width: int, | |
| method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL, | |
| vae_per_channel_normalize: bool = False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| Prepare the conditioning data for the video generation. If an input media item is provided, encode it | |
| and set the conditioning_mask to indicate which tokens to condition on. Input media item should have | |
| the same height and width as the generated video. | |
| Args: | |
| media_items (torch.Tensor): media items to condition on (images or videos) | |
| num_frames (int): number of frames to generate | |
| height (int): height of the generated video | |
| width (int): width of the generated video | |
| method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL. | |
| vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask | |
| """ | |
| if media_items is None or method == ConditioningMethod.UNCONDITIONAL: | |
| return None, None | |
| assert media_items.ndim == 5 | |
| assert height == media_items.shape[-2] and width == media_items.shape[-1] | |
| # Encode the input video and repeat to the required number of frame-tokens | |
| init_latents = vae_encode( | |
| media_items.to(dtype=self.vae.dtype, device=self.vae.device), | |
| self.vae, | |
| vae_per_channel_normalize=vae_per_channel_normalize, | |
| ).float() | |
| init_len, target_len = init_latents.shape[2], num_frames // self.video_scale_factor | |
| if isinstance(self.vae, CausalVideoAutoencoder): | |
| target_len += 1 | |
| init_latents = init_latents[:, :, :target_len] | |
| if target_len > init_len: | |
| repeat_factor = (target_len + init_len - 1) // init_len # Ceiling division | |
| init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[:, :, :target_len] | |
| # Prepare the conditioning mask (1.0 = condition on this token) | |
| b, n, f, h, w = init_latents.shape | |
| conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device) | |
| if method in [ConditioningMethod.FIRST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: | |
| conditioning_mask[:, :, 0] = 1.0 | |
| if method in [ConditioningMethod.LAST_FRAME, ConditioningMethod.FIRST_AND_LAST_FRAME]: | |
| conditioning_mask[:, :, -1] = 1.0 | |
| # Patchify the init latents and the mask | |
| conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1) | |
| init_latents = self.patchifier.patchify(latents=init_latents) | |
| return init_latents, conditioning_mask | |