Spaces:
Paused
Paused
Upload inference.py
Browse files- inference.py +35 -24
inference.py
CHANGED
@@ -1,34 +1,31 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
-
|
4 |
import joblib
|
5 |
import argparse
|
6 |
import os
|
7 |
import glob
|
8 |
from sklearn.multioutput import MultiOutputRegressor
|
9 |
from tabpfn_extensions.post_hoc_ensembles.sklearn_interface import AutoTabPFNRegressor
|
|
|
10 |
|
11 |
|
12 |
-
|
13 |
-
# os.environ["OMP_NUM_THREADS"] = os.cpu_count()
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
except Exception:
|
23 |
-
# Fallback wrapper if direct setattr isn't allowed in your build
|
24 |
-
class _TorchClassesWrapper:
|
25 |
-
def __init__(self, obj):
|
26 |
-
self._obj = obj
|
27 |
-
self.__path__ = []
|
28 |
-
def __getattr__(self, name):
|
29 |
-
return getattr(self._obj, name)
|
30 |
-
torch.classes = _TorchClassesWrapper(torch.classes)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
class TabPFNEnsemblePredictor:
|
34 |
"""
|
@@ -44,7 +41,7 @@ class TabPFNEnsemblePredictor:
|
|
44 |
target_cols (list): The names of the target columns for the output DataFrame.
|
45 |
"""
|
46 |
|
47 |
-
def __init__(self, model_dir: str, model_pattern: str = "Fold_*_best_model.tabpfn_fit"):
|
48 |
"""
|
49 |
Initializes the predictor by finding and loading the ensemble of models.
|
50 |
|
@@ -80,15 +77,29 @@ class TabPFNEnsemblePredictor:
|
|
80 |
# Move model components to CPU for inference to avoid potential CUDA errors
|
81 |
# and ensure compatibility on machines without a GPU.
|
82 |
if not torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
print("Cuda not available using cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
model = joblib.load(model_path)
|
85 |
for estimator in model.estimators_:
|
86 |
if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
|
87 |
for p in estimator.predictor_.predictors:
|
88 |
-
p.to("
|
89 |
-
else:
|
90 |
-
print("Cuda is available")
|
91 |
-
model = joblib.load(model_path)
|
92 |
|
93 |
loaded_models.append(model)
|
94 |
print(f"Successfully loaded {os.path.basename(model_path)}")
|
@@ -122,7 +133,7 @@ class TabPFNEnsemblePredictor:
|
|
122 |
|
123 |
return df_featured
|
124 |
|
125 |
-
def
|
126 |
"""
|
127 |
Generates ensembled predictions for the given input data.
|
128 |
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
+
import torch
|
4 |
import joblib
|
5 |
import argparse
|
6 |
import os
|
7 |
import glob
|
8 |
from sklearn.multioutput import MultiOutputRegressor
|
9 |
from tabpfn_extensions.post_hoc_ensembles.sklearn_interface import AutoTabPFNRegressor
|
10 |
+
from tabpfn import TabPFNRegressor
|
11 |
|
12 |
|
13 |
+
os.environ["TABPFN_ALLOW_CPU_LARGE_DATASET"] = "true"
|
|
|
|
|
|
|
14 |
|
15 |
+
def joblib_load_cpu(path):
|
16 |
+
# Patch torch.load globally inside joblib to always load on CPU
|
17 |
+
original_load = torch.load
|
18 |
|
19 |
+
def cpu_loader(*args, **kwargs):
|
20 |
+
kwargs['map_location'] = torch.device('cpu')
|
21 |
+
return original_load(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
torch.load = cpu_loader
|
24 |
+
try:
|
25 |
+
model = joblib.load(path)
|
26 |
+
finally:
|
27 |
+
torch.load = original_load # Restore original torch.load
|
28 |
+
return model
|
29 |
|
30 |
class TabPFNEnsemblePredictor:
|
31 |
"""
|
|
|
41 |
target_cols (list): The names of the target columns for the output DataFrame.
|
42 |
"""
|
43 |
|
44 |
+
def __init__(self, model_dir: str, model_pattern: str = "Fold_*_best_model.tabpfn_fit*"):
|
45 |
"""
|
46 |
Initializes the predictor by finding and loading the ensemble of models.
|
47 |
|
|
|
77 |
# Move model components to CPU for inference to avoid potential CUDA errors
|
78 |
# and ensure compatibility on machines without a GPU.
|
79 |
if not torch.cuda.is_available():
|
80 |
+
#torch.device("cpu") # Force default
|
81 |
+
#os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
82 |
+
#os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
83 |
+
#os.environ["HSA_OVERRIDE_GFX_VERSION"] = "0"
|
84 |
+
model = joblib_load_cpu(model_path)
|
85 |
+
for estimator in model.estimators_:
|
86 |
+
estimator.device = "cpu"
|
87 |
+
estimator.max_time = 40
|
88 |
print("Cuda not available using cpu")
|
89 |
+
#for estimator in model.estimators_:
|
90 |
+
# if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
|
91 |
+
# for p in estimator.predictor_.predictors:
|
92 |
+
# p.to("cpu")
|
93 |
+
# if hasattr(estimator.predictor_, 'to'):
|
94 |
+
# estimator.predictor_.to('cpu')
|
95 |
+
|
96 |
+
else:
|
97 |
+
print("Cuda is available")
|
98 |
model = joblib.load(model_path)
|
99 |
for estimator in model.estimators_:
|
100 |
if hasattr(estimator, "predictor_") and hasattr(estimator.predictor_, "predictors"):
|
101 |
for p in estimator.predictor_.predictors:
|
102 |
+
p.to("cuda")
|
|
|
|
|
|
|
103 |
|
104 |
loaded_models.append(model)
|
105 |
print(f"Successfully loaded {os.path.basename(model_path)}")
|
|
|
133 |
|
134 |
return df_featured
|
135 |
|
136 |
+
def custom_predict(self, input_data: pd.DataFrame or np.ndarray or str) -> (np.ndarray, pd.DataFrame):
|
137 |
"""
|
138 |
Generates ensembled predictions for the given input data.
|
139 |
|