Spaces:
Runtime error
Runtime error
Create STT/sst.py
Browse files- STT/sst.py +38 -0
STT/sst.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# تحميل المعالج والنموذج
|
6 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
7 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
8 |
+
|
9 |
+
def speech_to_text(audio_path):
|
10 |
+
if audio_path is None:
|
11 |
+
raise ValueError("Audio path is None. Did you upload a file?")
|
12 |
+
|
13 |
+
# تحميل الصوت
|
14 |
+
waveform, sampling_rate = torchaudio.load(audio_path)
|
15 |
+
|
16 |
+
# إذا كان ستيريو نخليه mono
|
17 |
+
if waveform.shape[0] > 1:
|
18 |
+
waveform = waveform.mean(dim=0)
|
19 |
+
|
20 |
+
# إعادة تشكيل الصوت إذا كان غير 16kHz
|
21 |
+
if sampling_rate != 16000:
|
22 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
23 |
+
waveform = resampler(waveform)
|
24 |
+
|
25 |
+
# تجهيز البيانات للنموذج
|
26 |
+
input_values = processor(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000).input_values
|
27 |
+
|
28 |
+
# استنتاج الـ logits والتنبؤ
|
29 |
+
with torch.no_grad():
|
30 |
+
logits = model(input_values).logits
|
31 |
+
|
32 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
33 |
+
|
34 |
+
# تحويل التنبؤ إلى نص
|
35 |
+
transcription = processor.batch_decode(predicted_ids)
|
36 |
+
|
37 |
+
return transcription[0]
|
38 |
+
|