Spaces:
Runtime error
Runtime error
Update STT/sst.py
Browse files- STT/sst.py +15 -16
STT/sst.py
CHANGED
@@ -2,30 +2,30 @@ from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
2 |
import torchaudio
|
3 |
import torch
|
4 |
|
5 |
-
# تحميل المعالج
|
6 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
7 |
-
model = Wav2Vec2ForCTC.from_pretrained("
|
8 |
|
9 |
def speech_to_text(audio_path):
|
10 |
if audio_path is None:
|
11 |
-
raise ValueError("
|
12 |
-
|
13 |
-
# تحميل الصوت
|
14 |
-
waveform, sampling_rate = torchaudio.load(audio_path)
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
17 |
if waveform.shape[0] > 1:
|
18 |
-
waveform = waveform.mean(dim=0)
|
19 |
|
20 |
-
# إعادة
|
21 |
-
if
|
22 |
-
resampler = torchaudio.transforms.Resample(orig_freq=
|
23 |
waveform = resampler(waveform)
|
24 |
-
|
25 |
-
# تجهيز
|
26 |
input_values = processor(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000).input_values
|
27 |
|
28 |
-
#
|
29 |
with torch.no_grad():
|
30 |
logits = model(input_values).logits
|
31 |
|
@@ -35,4 +35,3 @@ def speech_to_text(audio_path):
|
|
35 |
transcription = processor.batch_decode(predicted_ids)
|
36 |
|
37 |
return transcription[0]
|
38 |
-
|
|
|
2 |
import torchaudio
|
3 |
import torch
|
4 |
|
5 |
+
# تحميل المعالج والموديل العربي
|
6 |
+
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
|
7 |
+
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
|
8 |
|
9 |
def speech_to_text(audio_path):
|
10 |
if audio_path is None:
|
11 |
+
raise ValueError("الصوت غير موجود")
|
|
|
|
|
|
|
12 |
|
13 |
+
# تحميل الملف الصوتي
|
14 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
15 |
+
|
16 |
+
# إذا الصوت ستيريو نحوله لمونو
|
17 |
if waveform.shape[0] > 1:
|
18 |
+
waveform = waveform.mean(dim=0).unsqueeze(0)
|
19 |
|
20 |
+
# إعادة تحويل التردد إلى 16000 لو كان مختلف
|
21 |
+
if sample_rate != 16000:
|
22 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
23 |
waveform = resampler(waveform)
|
24 |
+
|
25 |
+
# تجهيز الإدخال للنموذج
|
26 |
input_values = processor(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000).input_values
|
27 |
|
28 |
+
# تمرير البيانات للنموذج والحصول على النتائج
|
29 |
with torch.no_grad():
|
30 |
logits = model(input_values).logits
|
31 |
|
|
|
35 |
transcription = processor.batch_decode(predicted_ids)
|
36 |
|
37 |
return transcription[0]
|
|