Spaces:
Running
Running
Add livestock model to demo
Browse files
app.py
CHANGED
@@ -10,21 +10,21 @@ def show_trees(img_path):
|
|
10 |
raise gr.Error(f"Error initializing the deepforest model: {model_error}")
|
11 |
|
12 |
img=cv2.imread(img_path)
|
13 |
-
|
14 |
if img is None:
|
15 |
raise gr.Error(f"Image path is not valid.")
|
16 |
-
|
17 |
if img.shape[0]<1000 and img.shape[1]<1000:
|
18 |
img = model.predict_image(path=img_path, return_plot=True)
|
19 |
elif img.shape[0]>1000 or img.shape[1]>1000:
|
20 |
img=model.predict_image(path=img_path,return_plot=True,thickness=2)
|
21 |
else:
|
22 |
-
img = model.predict_image(path=img_path, return_plot=True,thickness=3)
|
23 |
-
|
24 |
if img is None:
|
25 |
raise gr.Error("No predictions were made. Check your test image. Ensure it conists")
|
26 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
27 |
-
|
28 |
return img
|
29 |
|
30 |
def show_birds(img_path):
|
@@ -34,21 +34,45 @@ def show_birds(img_path):
|
|
34 |
except Exception as model_error:
|
35 |
raise gr.Error(f"Error initializing the deepforest model: {model_error}")
|
36 |
img=cv2.imread(img_path)
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
if img is None:
|
39 |
raise gr.Error(f"Image path is not valid.")
|
40 |
-
|
41 |
if img.shape[0]<1000 and img.shape[1]<1000:
|
42 |
img = model.predict_image(path=img_path, return_plot=True)
|
43 |
elif img.shape[0]>1000 or img.shape[1]>1000:
|
44 |
img=model.predict_image(path=img_path,return_plot=True,thickness=2)
|
45 |
else:
|
46 |
-
img = model.predict_image(path=img_path, return_plot=True,thickness=3)
|
47 |
-
|
48 |
if img is None:
|
49 |
raise gr.Error("No predictions were made. Check your test image. Ensure it conists")
|
50 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
51 |
-
|
52 |
return img
|
53 |
|
54 |
with gr.Blocks() as demo:
|
@@ -63,16 +87,26 @@ with gr.Blocks() as demo:
|
|
63 |
|
64 |
submit_button_trees = gr.Button("Predict trees")
|
65 |
submit_button_trees.click(show_trees, inputs=input_image, outputs=output_image)
|
66 |
-
|
67 |
gr.Markdown('### Predict birds')
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
input_image=gr.Image(label="Input image",type="filepath")
|
71 |
with gr.Column():
|
72 |
output_image=gr.Image(label="Predicted Image")
|
73 |
-
|
74 |
submit_button_birds = gr.Button("Predict birds")
|
75 |
submit_button_birds.click(show_birds,inputs=input_image,outputs=output_image)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
if __name__ == "__main__":
|
78 |
-
demo.launch()
|
|
|
10 |
raise gr.Error(f"Error initializing the deepforest model: {model_error}")
|
11 |
|
12 |
img=cv2.imread(img_path)
|
13 |
+
|
14 |
if img is None:
|
15 |
raise gr.Error(f"Image path is not valid.")
|
16 |
+
|
17 |
if img.shape[0]<1000 and img.shape[1]<1000:
|
18 |
img = model.predict_image(path=img_path, return_plot=True)
|
19 |
elif img.shape[0]>1000 or img.shape[1]>1000:
|
20 |
img=model.predict_image(path=img_path,return_plot=True,thickness=2)
|
21 |
else:
|
22 |
+
img = model.predict_image(path=img_path, return_plot=True,thickness=3)
|
23 |
+
|
24 |
if img is None:
|
25 |
raise gr.Error("No predictions were made. Check your test image. Ensure it conists")
|
26 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
27 |
+
|
28 |
return img
|
29 |
|
30 |
def show_birds(img_path):
|
|
|
34 |
except Exception as model_error:
|
35 |
raise gr.Error(f"Error initializing the deepforest model: {model_error}")
|
36 |
img=cv2.imread(img_path)
|
37 |
+
|
38 |
+
if img is None:
|
39 |
+
raise gr.Error(f"Image path is not valid.")
|
40 |
+
|
41 |
+
if img.shape[0]<1000 and img.shape[1]<1000:
|
42 |
+
img = model.predict_image(path=img_path, return_plot=True)
|
43 |
+
elif img.shape[0]>1000 or img.shape[1]>1000:
|
44 |
+
img=model.predict_image(path=img_path,return_plot=True,thickness=2)
|
45 |
+
else:
|
46 |
+
img = model.predict_image(path=img_path, return_plot=True,thickness=3)
|
47 |
+
|
48 |
+
if img is None:
|
49 |
+
raise gr.Error("No predictions were made. Check your test image. Ensure it conists")
|
50 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
51 |
+
|
52 |
+
return img
|
53 |
+
|
54 |
+
def show_livestock(img_path):
|
55 |
+
try:
|
56 |
+
model = main.deepforest()
|
57 |
+
model.load_model(model_name="weecology/deepforest-livestock")
|
58 |
+
except Exception as model_error:
|
59 |
+
raise gr.Error(f"Error initializing the deepforest model: {model_error}")
|
60 |
+
img=cv2.imread(img_path)
|
61 |
+
|
62 |
if img is None:
|
63 |
raise gr.Error(f"Image path is not valid.")
|
64 |
+
|
65 |
if img.shape[0]<1000 and img.shape[1]<1000:
|
66 |
img = model.predict_image(path=img_path, return_plot=True)
|
67 |
elif img.shape[0]>1000 or img.shape[1]>1000:
|
68 |
img=model.predict_image(path=img_path,return_plot=True,thickness=2)
|
69 |
else:
|
70 |
+
img = model.predict_image(path=img_path, return_plot=True,thickness=3)
|
71 |
+
|
72 |
if img is None:
|
73 |
raise gr.Error("No predictions were made. Check your test image. Ensure it conists")
|
74 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
75 |
+
|
76 |
return img
|
77 |
|
78 |
with gr.Blocks() as demo:
|
|
|
87 |
|
88 |
submit_button_trees = gr.Button("Predict trees")
|
89 |
submit_button_trees.click(show_trees, inputs=input_image, outputs=output_image)
|
90 |
+
|
91 |
gr.Markdown('### Predict birds')
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
input_image=gr.Image(label="Input image",type="filepath")
|
95 |
with gr.Column():
|
96 |
output_image=gr.Image(label="Predicted Image")
|
97 |
+
|
98 |
submit_button_birds = gr.Button("Predict birds")
|
99 |
submit_button_birds.click(show_birds,inputs=input_image,outputs=output_image)
|
100 |
|
101 |
+
gr.Markdown('### Predict livestock')
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column():
|
104 |
+
input_image=gr.Image(label="Input image",type="filepath")
|
105 |
+
with gr.Column():
|
106 |
+
output_image=gr.Image(label="Predicted Image")
|
107 |
+
|
108 |
+
submit_button_livestock = gr.Button("Predict livestock")
|
109 |
+
submit_button_livestock.click(show_livestock,inputs=input_image,outputs=output_image)
|
110 |
+
|
111 |
if __name__ == "__main__":
|
112 |
+
demo.launch()
|