Spaces:
Runtime error
Runtime error
Linoy Tsaban
commited on
Commit
·
68aadbb
1
Parent(s):
5a5e0bc
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,10 @@
|
|
|
|
1 |
import torch
|
2 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
|
@@ -9,45 +14,59 @@ model_id = "stabilityai/stable-diffusion-2-1-base"
|
|
9 |
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
10 |
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
):
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
29 |
-
toy_scheduler.set_timesteps(save_steps)
|
30 |
-
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
31 |
-
strength=1.0,
|
32 |
-
device=device)
|
33 |
-
seed_everything(1)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
|
|
44 |
|
45 |
|
46 |
|
47 |
-
return frames, latents, inverted_latents
|
48 |
-
|
49 |
-
import gradio as gr
|
50 |
-
|
51 |
########
|
52 |
# demo #
|
53 |
########
|
@@ -64,7 +83,10 @@ intro = """
|
|
64 |
with gr.Blocks(css="style.css") as demo:
|
65 |
|
66 |
gr.HTML(intro)
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
with gr.Row():
|
70 |
input_vid = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
@@ -79,16 +101,57 @@ with gr.Blocks(css="style.css") as demo:
|
|
79 |
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
80 |
|
81 |
|
82 |
-
with gr.Row():
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
with gr.Row():
|
88 |
run_button = gr.Button("Edit your video!", visible=True)
|
89 |
-
|
90 |
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
|
|
|
1 |
+
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
4 |
+
from utils import *
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
|
9 |
|
10 |
|
|
|
14 |
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
15 |
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
16 |
|
17 |
+
def randomize_seed_fn():
|
18 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
19 |
+
return seed
|
20 |
+
|
21 |
+
def preprocess_and_invert(video,
|
22 |
+
frames,
|
23 |
+
latents,
|
24 |
+
inverted_latents,
|
25 |
+
seed,
|
26 |
+
randomize_seed,
|
27 |
+
do_inversion,
|
28 |
+
height:int = 512,
|
29 |
+
weidth: int = 512,
|
30 |
+
# save_dir: str = "latents",
|
31 |
+
steps: int = 500,
|
32 |
+
batch_size: int = 8,
|
33 |
+
# save_steps: int = 50,
|
34 |
+
n_frames: int = 40,
|
35 |
+
inversion_prompt:str = ''
|
36 |
):
|
37 |
+
|
38 |
+
if do_inversion or randomize_seed:
|
39 |
|
40 |
+
# save_video_frames(data_path, img_size=(height, weidth))
|
41 |
+
frames = video_to_frames(video, img_size=(height, weidth))
|
42 |
+
# data_path = os.path.join('data', Path(video_path).stem)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
45 |
+
toy_scheduler.set_timesteps(save_steps)
|
46 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
47 |
+
strength=1.0,
|
48 |
+
device=device)
|
49 |
+
if randomize_seed:
|
50 |
+
seed = randomize_seed_fn()
|
51 |
+
seed_everything(seed)
|
52 |
+
|
53 |
+
frames, latents = get_data(inv_pipe, frames, n_frames)
|
54 |
+
|
55 |
+
inverted_latents = extract_latents(inv_pipe, num_steps = steps,
|
56 |
+
latent_frames = latents,
|
57 |
+
batch_size = batch_size,
|
58 |
+
timesteps_to_save = timesteps_to_save,
|
59 |
+
inversion_prompt = inversion_prompt,)
|
60 |
+
frames = gr.State(value=frames)
|
61 |
+
latents = gr.State(value=latents)
|
62 |
+
inverted_latents = gr.State(value=inverted_latents)
|
63 |
+
do_inversion = False
|
64 |
|
65 |
|
66 |
+
return frames, latents, inverted_latents, do_inversion
|
67 |
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
70 |
########
|
71 |
# demo #
|
72 |
########
|
|
|
83 |
with gr.Blocks(css="style.css") as demo:
|
84 |
|
85 |
gr.HTML(intro)
|
86 |
+
frames = gr.State()
|
87 |
+
inverted_latents = gr.State()
|
88 |
+
latents = gr.State()
|
89 |
+
do_inversion = gr.State(value=True)
|
90 |
|
91 |
with gr.Row():
|
92 |
input_vid = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
|
|
101 |
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
102 |
|
103 |
|
104 |
+
# with gr.Row():
|
105 |
+
# inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
|
106 |
+
|
|
|
|
|
107 |
with gr.Row():
|
108 |
run_button = gr.Button("Edit your video!", visible=True)
|
|
|
109 |
|
110 |
+
with gr.Accordion("Advanced Options", open=False):
|
111 |
+
with gr.Tabs() as tabs:
|
112 |
+
|
113 |
+
with gr.TabItem('General options', id=2):
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column(min_width=100):
|
116 |
+
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
117 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
118 |
+
steps = gr.Slider(label='Inversion steps', minimum=100, maximum=500,
|
119 |
+
value=500, step=1, interactive=True)
|
120 |
+
with gr.Column(min_width=100):
|
121 |
+
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
122 |
+
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10,
|
123 |
+
value=8, step=1, interactive=True)
|
124 |
+
n_frames = gr.Slider(label='Num frames', minimum=20, maximum=200,
|
125 |
+
value=40, step=1, interactive=True)
|
126 |
+
|
127 |
+
input_vid.change(
|
128 |
+
fn = reset_do_inversion,
|
129 |
+
outputs = [do_inversion],
|
130 |
+
queue = False)
|
131 |
+
|
132 |
+
input_vid.upload(
|
133 |
+
fn = reset_do_inversion,
|
134 |
+
outputs = [do_inversion],
|
135 |
+
queue = False)
|
136 |
+
).then(fn = preprocess_and_invert,
|
137 |
+
inputs = [input_vid,
|
138 |
+
frames,
|
139 |
+
latents,
|
140 |
+
inverted_latents,
|
141 |
+
seed,
|
142 |
+
randomize_seed,
|
143 |
+
do_inversion,
|
144 |
+
steps,
|
145 |
+
batch_size,
|
146 |
+
n_frames,
|
147 |
+
inversion_prompt
|
148 |
+
],
|
149 |
+
outputs = [frames,
|
150 |
+
latents,
|
151 |
+
inverted_latents,
|
152 |
+
do_inversion
|
153 |
+
|
154 |
+
])
|
155 |
|
156 |
|
157 |
|