import os
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from queue import Queue, Empty
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
model_id = "meta-llama/Meta-Llama-3.1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ.get("MY_API_LLAMA_3_1"))
model = None
model_load_queue = Queue()
def load_model():
global model
try:
if model is None:
logger.info("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=os.environ.get("MY_API_LLAMA_3_1"),
torch_dtype=torch.bfloat16,
device_map="auto",
low_cpu_mem_usage=True,
load_in_8bit=True
)
logger.info("Model loaded successfully")
model_load_queue.put(model)
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
model_load_queue.put(None)
@spaces.GPU(duration=120)
def generate_response(chat, kwargs):
global model
try:
if model is None:
logger.info("Starting model loading thread")
Thread(target=load_model).start()
model = model_load_queue.get(timeout=120)
if model is None:
return "Nie udało się załadować modelu. Proszę spróbować ponownie później."
logger.info("Preparing input for generation")
inputs = tokenizer(chat, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True)
if 'seed' in kwargs:
del kwargs['seed']
generation_kwargs = dict(inputs, streamer=streamer, **kwargs)
logger.info("Starting generation thread")
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
output = ""
try:
for new_text in streamer:
output += new_text
if output.endswith(""):
output = output[:-4]
break
except Empty:
logger.warning("Timeout occurred during generation")
logger.info("Generation completed")
return output
except Exception as e:
logger.error(f"Error in generate_response: {str(e)}")
return f"Wystąpił błąd: {str(e)}"
def function(prompt, history=[]):
chat = ""
for user_prompt, bot_response in history:
chat += f"[INST] {user_prompt} [/INST] {bot_response} "
chat += f"[INST] {prompt} [/INST]"
kwargs = dict(
max_new_tokens=4096,
do_sample=True,
temperature=0.5,
top_p=0.95,
repetition_penalty=1.0
)
return generate_response(chat, kwargs)
interface = gr.ChatInterface(
fn=function,
chatbot=gr.Chatbot(
avatar_images=None,
container=False,
show_copy_button=True,
layout='bubble',
render_markdown=True,
line_breaks=True
),
css='h1 {font-size:22px;} h2 {font-size:20px;} h3 {font-size:18px;} h4 {font-size:16px;}',
autofocus=True,
fill_height=True,
analytics_enabled=False,
submit_btn='Chat',
stop_btn=None,
retry_btn=None,
undo_btn=None,
clear_btn=None
)
interface.launch(show_api=True, share=True)