import os import spaces import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread from queue import Queue, Empty import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) model_id = "meta-llama/Meta-Llama-3.1-8B" tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.environ.get("MY_API_LLAMA_3_1")) model = None model_load_queue = Queue() def load_model(): global model try: if model is None: logger.info("Loading model...") model = AutoModelForCausalLM.from_pretrained( model_id, token=os.environ.get("MY_API_LLAMA_3_1"), torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True, load_in_8bit=True ) logger.info("Model loaded successfully") model_load_queue.put(model) except Exception as e: logger.error(f"Error loading model: {str(e)}") model_load_queue.put(None) @spaces.GPU(duration=120) def generate_response(chat, kwargs): global model try: if model is None: logger.info("Starting model loading thread") Thread(target=load_model).start() model = model_load_queue.get(timeout=120) if model is None: return "Nie udało się załadować modelu. Proszę spróbować ponownie później." logger.info("Preparing input for generation") inputs = tokenizer(chat, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=120., skip_prompt=True, skip_special_tokens=True) if 'seed' in kwargs: del kwargs['seed'] generation_kwargs = dict(inputs, streamer=streamer, **kwargs) logger.info("Starting generation thread") thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() output = "" try: for new_text in streamer: output += new_text if output.endswith(""): output = output[:-4] break except Empty: logger.warning("Timeout occurred during generation") logger.info("Generation completed") return output except Exception as e: logger.error(f"Error in generate_response: {str(e)}") return f"Wystąpił błąd: {str(e)}" def function(prompt, history=[]): chat = "" for user_prompt, bot_response in history: chat += f"[INST] {user_prompt} [/INST] {bot_response} " chat += f"[INST] {prompt} [/INST]" kwargs = dict( max_new_tokens=4096, do_sample=True, temperature=0.5, top_p=0.95, repetition_penalty=1.0 ) return generate_response(chat, kwargs) interface = gr.ChatInterface( fn=function, chatbot=gr.Chatbot( avatar_images=None, container=False, show_copy_button=True, layout='bubble', render_markdown=True, line_breaks=True ), css='h1 {font-size:22px;} h2 {font-size:20px;} h3 {font-size:18px;} h4 {font-size:16px;}', autofocus=True, fill_height=True, analytics_enabled=False, submit_btn='Chat', stop_btn=None, retry_btn=None, undo_btn=None, clear_btn=None ) interface.launch(show_api=True, share=True)