wiraindrak commited on
Commit
1d228e3
·
1 Parent(s): b20a69c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -2,7 +2,6 @@ from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, pipel
2
  import nltk.data
3
  import pandas as pd
4
  import matplotlib.pyplot as plt
5
- from googletrans import Translator
6
  from google_trans_new import google_translator
7
 
8
  nltk.download('punkt')
@@ -59,8 +58,9 @@ def ner(text):
59
  return {"text": text, "entities": output}
60
 
61
  def sentiment_df(text):
62
- df = pd.DataFrame(columns=['Text', 'Label', 'Score'])
63
  text_list = sentence_tokenizer.tokenize(text)
 
64
  result = [sentiment_analysis(text) for text in text_list]
65
  labels = []
66
  scores = []
@@ -69,6 +69,7 @@ def sentiment_df(text):
69
  labels.append(list(pred.keys())[idx])
70
  scores.append(round(list(pred.values())[idx], 3))
71
  df['Text'] = text_list
 
72
  df['Label'] = labels
73
  df['Score'] = scores
74
  return df
@@ -78,7 +79,8 @@ def run(text):
78
  summ_translated = translator.transalate(summ_, lang_src='id',lang_tgt='en')
79
  sent_ = sentiment_analysis(summ_translated )
80
  ner_ = ner(summ_)
81
- return summ_, sent_, ner_
 
82
 
83
  if __name__ == "__main__":
84
  with gr.Blocks() as demo:
@@ -99,6 +101,12 @@ if __name__ == "__main__":
99
  ner_output = gr.HighlightedText(label="NER Summary")
100
  sent_output = gr.Label(label="Sentiment Summary")
101
 
 
 
 
 
 
 
102
 
103
  analyze_button.click(run, inputs=input_text, outputs=[summ_output, sent_output, ner_output])
104
  demo.launch()
 
2
  import nltk.data
3
  import pandas as pd
4
  import matplotlib.pyplot as plt
 
5
  from google_trans_new import google_translator
6
 
7
  nltk.download('punkt')
 
58
  return {"text": text, "entities": output}
59
 
60
  def sentiment_df(text):
61
+ df = pd.DataFrame(columns=['Text', 'Eng', 'Label', 'Score'])
62
  text_list = sentence_tokenizer.tokenize(text)
63
+ eng_text = [translator.transalate(text, lang_src='id',lang_tgt='en') for text in text_list]
64
  result = [sentiment_analysis(text) for text in text_list]
65
  labels = []
66
  scores = []
 
69
  labels.append(list(pred.keys())[idx])
70
  scores.append(round(list(pred.values())[idx], 3))
71
  df['Text'] = text_list
72
+ df['Eng'] = eng_text
73
  df['Label'] = labels
74
  df['Score'] = scores
75
  return df
 
79
  summ_translated = translator.transalate(summ_, lang_src='id',lang_tgt='en')
80
  sent_ = sentiment_analysis(summ_translated )
81
  ner_ = ner(summ_)
82
+ df_sentiment = sentiment_df(text)
83
+ return summ_, sent_, ner_, df_sentiment
84
 
85
  if __name__ == "__main__":
86
  with gr.Blocks() as demo:
 
101
  ner_output = gr.HighlightedText(label="NER Summary")
102
  sent_output = gr.Label(label="Sentiment Summary")
103
 
104
+ dataframe_component = gr.DataFrame(type="pandas",
105
+ label="Dataframe",
106
+ max_rows=(20,'fixed'),
107
+ overflow_row_behaviour='paginate',
108
+ wrap=True)
109
+
110
 
111
  analyze_button.click(run, inputs=input_text, outputs=[summ_output, sent_output, ner_output])
112
  demo.launch()