Commit
·
88e0f7f
1
Parent(s):
7922adf
Upload 4 files
Browse files- app.py +486 -0
- deberta_results.csv +0 -0
- exp_utils.py +1157 -0
- visualize_utils.py +57 -0
app.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
import plotly.figure_factory as ff
|
| 7 |
+
import plotly.graph_objects as go
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
+
|
| 11 |
+
from exp_utils import MODELS
|
| 12 |
+
from visualize_utils import viridis_rgb
|
| 13 |
+
|
| 14 |
+
#
|
| 15 |
+
|
| 16 |
+
st.set_page_config(
|
| 17 |
+
page_title="Results Viewer",
|
| 18 |
+
page_icon="📊",
|
| 19 |
+
initial_sidebar_state="expanded",
|
| 20 |
+
layout="wide",
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
MODELS_SIZE_MAPPING = {k: v["model_size"] for k, v in MODELS.items()}
|
| 24 |
+
MODELS_FAMILY_MAPPING = {k: v["model_family"] for k, v in MODELS.items()}
|
| 25 |
+
MODEL_FAMILES = set([model["model_family"] for model in MODELS.values()])
|
| 26 |
+
MODEL_NAMES = list(MODELS.keys())
|
| 27 |
+
|
| 28 |
+
MODEL_NAMES_SORTED_BY_NAME_AND_SIZE = sorted(
|
| 29 |
+
MODEL_NAMES, key=lambda x: (MODELS[x]["model_family"], MODELS[x]["model_size"])
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
MODEL_NAMES_SORTED_BY_SIZE = sorted(
|
| 33 |
+
MODEL_NAMES, key=lambda x: (MODELS[x]["model_size"], MODELS[x]["model_family"])
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# sort MODELS_SIZE_MAPPING by value then by key
|
| 38 |
+
MODELS_SIZE_MAPPING = {
|
| 39 |
+
k: v
|
| 40 |
+
for k, v in sorted(MODELS_SIZE_MAPPING.items(), key=lambda item: (item[1], item[0]))
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
MODELS_SIZE_MAPPING_LIST = list(MODELS_SIZE_MAPPING.keys())
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
CHAT_MODELS = [x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if MODELS[x]["is_chat"]]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def clean_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 50 |
+
# remove all columns that have "_loss" and "_runtime" in them
|
| 51 |
+
words_to_remove = [
|
| 52 |
+
"epoch",
|
| 53 |
+
"loss",
|
| 54 |
+
"runtime",
|
| 55 |
+
"samples_per_second",
|
| 56 |
+
"steps_per_second",
|
| 57 |
+
"samples",
|
| 58 |
+
"results_dir",
|
| 59 |
+
]
|
| 60 |
+
df = df.loc[
|
| 61 |
+
:,
|
| 62 |
+
~df.columns.str.contains("|".join(words_to_remove), case=False, regex=True),
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
# rename the rest of the columns by replacing "_roc_auc" with ""
|
| 66 |
+
df.columns = df.columns.str.replace("_roc_auc", "")
|
| 67 |
+
df.columns = df.columns.str.replace("eval_", "")
|
| 68 |
+
|
| 69 |
+
df["model_family"] = df["model_name"].map(MODELS_FAMILY_MAPPING)
|
| 70 |
+
# create a dict with the model_name and the model_family
|
| 71 |
+
model_family_dict = {
|
| 72 |
+
k: v
|
| 73 |
+
for k, v in zip(
|
| 74 |
+
df["model_name"].values.tolist(), df["model_family"].values.tolist()
|
| 75 |
+
)
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# average the results over the 5 seeds for each model (seed column is exp_seed)
|
| 79 |
+
df_avg = df.groupby(["model_name"]).mean()
|
| 80 |
+
df_std = df.groupby(["model_name"]).std()
|
| 81 |
+
|
| 82 |
+
# remove the exp_seed column
|
| 83 |
+
df_avg = df_avg.drop(columns=["exp_seed"])
|
| 84 |
+
df_std = df_std.drop(columns=["exp_seed"])
|
| 85 |
+
df_avg["model_family"] = df_avg.index.map(model_family_dict)
|
| 86 |
+
df_std["model_family"] = df_std.index.map(model_family_dict)
|
| 87 |
+
df_avg["model_size"] = df_avg.index.map(MODELS_SIZE_MAPPING)
|
| 88 |
+
df_std["model_size"] = df_std.index.map(MODELS_SIZE_MAPPING)
|
| 89 |
+
|
| 90 |
+
# sort rows by model family then model size
|
| 91 |
+
df_avg = df_avg.sort_values(
|
| 92 |
+
by=["model_family", "model_size"], ascending=[True, True]
|
| 93 |
+
)
|
| 94 |
+
df_std = df_std.sort_values(
|
| 95 |
+
by=["model_family", "model_size"], ascending=[True, True]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
availables_rows = [x for x in df_avg.columns if x in df_avg.index]
|
| 99 |
+
df_avg = df_avg.reindex(availables_rows)
|
| 100 |
+
|
| 101 |
+
availables_rows = [x for x in df_std.columns if x in df_std.index]
|
| 102 |
+
df_std = df_std.reindex(availables_rows)
|
| 103 |
+
|
| 104 |
+
return df_avg, df_std
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def get_data(path):
|
| 108 |
+
df, df_std = clean_dataframe(pd.read_csv(path, index_col=0))
|
| 109 |
+
return df, df_std
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def filter_df(
|
| 113 |
+
df: pd.DataFrame,
|
| 114 |
+
model_family_train: list,
|
| 115 |
+
model_family_test: list,
|
| 116 |
+
model_size_train: tuple,
|
| 117 |
+
model_size_test: tuple,
|
| 118 |
+
is_chat_train: bool,
|
| 119 |
+
is_chat_test: bool,
|
| 120 |
+
sort_by_size: bool,
|
| 121 |
+
split_chat_models: bool,
|
| 122 |
+
is_debug: bool,
|
| 123 |
+
) -> pd.DataFrame:
|
| 124 |
+
# remove all columns and rows that have "pythia-70m" in the name
|
| 125 |
+
|
| 126 |
+
# filter rows
|
| 127 |
+
if is_debug:
|
| 128 |
+
st.write("No filters")
|
| 129 |
+
st.write(df)
|
| 130 |
+
df = df.loc[
|
| 131 |
+
(df["model_size"] >= model_size_train[0] * 1e9)
|
| 132 |
+
& (df["model_size"] <= model_size_train[1] * 1e9)
|
| 133 |
+
]
|
| 134 |
+
if is_debug:
|
| 135 |
+
st.write("Filter model size train")
|
| 136 |
+
st.write(df)
|
| 137 |
+
df = df.loc[df["model_family"].isin(model_family_train)]
|
| 138 |
+
if is_debug:
|
| 139 |
+
st.write("Filter model family train")
|
| 140 |
+
st.write(df)
|
| 141 |
+
if is_chat_train != "Both":
|
| 142 |
+
df = df.loc[df["is_chat"] == is_chat_train]
|
| 143 |
+
if is_debug:
|
| 144 |
+
st.write("Filter is chat train")
|
| 145 |
+
st.write(df)
|
| 146 |
+
|
| 147 |
+
# filter columns
|
| 148 |
+
if is_debug:
|
| 149 |
+
st.write("No filters")
|
| 150 |
+
st.write(df)
|
| 151 |
+
columns_to_keep = []
|
| 152 |
+
for column in df.columns:
|
| 153 |
+
if column in MODELS.keys():
|
| 154 |
+
model_size = MODELS[column]["model_size"]
|
| 155 |
+
if (
|
| 156 |
+
model_size >= model_size_test[0] * 1e9
|
| 157 |
+
and model_size <= model_size_test[1] * 1e9
|
| 158 |
+
):
|
| 159 |
+
columns_to_keep.append(column)
|
| 160 |
+
|
| 161 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
| 162 |
+
if is_debug:
|
| 163 |
+
st.write("Filter model size test")
|
| 164 |
+
st.write(df)
|
| 165 |
+
|
| 166 |
+
# filter columns
|
| 167 |
+
columns_to_keep = []
|
| 168 |
+
for column in df.columns:
|
| 169 |
+
for model_family in model_family_test:
|
| 170 |
+
if model_family == MODELS[column]["model_family"]:
|
| 171 |
+
columns_to_keep.append(column)
|
| 172 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
| 173 |
+
if is_debug:
|
| 174 |
+
st.write("Filter model family test")
|
| 175 |
+
st.write(df)
|
| 176 |
+
|
| 177 |
+
if is_chat_test != "Both":
|
| 178 |
+
# filter columns
|
| 179 |
+
columns_to_keep = []
|
| 180 |
+
for column in df.columns:
|
| 181 |
+
if MODELS[column]["is_chat"] == is_chat_test:
|
| 182 |
+
columns_to_keep.append(column)
|
| 183 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
| 184 |
+
if is_debug:
|
| 185 |
+
st.write("Filter is chat test")
|
| 186 |
+
st.write(df)
|
| 187 |
+
|
| 188 |
+
df = df.select_dtypes(include="number")
|
| 189 |
+
if is_debug:
|
| 190 |
+
st.write("Select dtypes to be only numbers")
|
| 191 |
+
st.write(df)
|
| 192 |
+
|
| 193 |
+
if sort_by_size:
|
| 194 |
+
columns_in = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.columns]
|
| 195 |
+
else:
|
| 196 |
+
columns_in = [x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.columns]
|
| 197 |
+
df = df[columns_in]
|
| 198 |
+
if is_debug:
|
| 199 |
+
st.write("Sort columns")
|
| 200 |
+
st.write(df)
|
| 201 |
+
|
| 202 |
+
# sort rows by size according the MODELS_SIZE_MAPPING_LIST
|
| 203 |
+
if sort_by_size:
|
| 204 |
+
availables_rows = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.index]
|
| 205 |
+
df = df.reindex(availables_rows)
|
| 206 |
+
else:
|
| 207 |
+
availables_rows = [
|
| 208 |
+
x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.index
|
| 209 |
+
]
|
| 210 |
+
df = df.reindex(availables_rows)
|
| 211 |
+
if is_debug:
|
| 212 |
+
st.write("Sort rows")
|
| 213 |
+
st.write(df)
|
| 214 |
+
|
| 215 |
+
if split_chat_models:
|
| 216 |
+
# put chat models at the end of the columns
|
| 217 |
+
chat_models = [x for x in CHAT_MODELS if x in df.columns]
|
| 218 |
+
# sort chat models by size
|
| 219 |
+
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
|
| 220 |
+
df = df[[x for x in df.columns if x not in chat_models] + chat_models]
|
| 221 |
+
|
| 222 |
+
# put chat models at the end of the rows
|
| 223 |
+
chat_models = [x for x in CHAT_MODELS if x in df.index]
|
| 224 |
+
# sort chat models by size
|
| 225 |
+
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
|
| 226 |
+
df = df.reindex([x for x in df.index if x not in chat_models] + chat_models)
|
| 227 |
+
if is_debug:
|
| 228 |
+
st.write("Split chat models")
|
| 229 |
+
st.write(df)
|
| 230 |
+
return df
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
df, df_std = get_data("./deberta_results.csv")
|
| 234 |
+
|
| 235 |
+
with open("./ood_results.json", "r") as f:
|
| 236 |
+
ood_results = json.load(f)
|
| 237 |
+
|
| 238 |
+
ood_results = pd.DataFrame(ood_results)
|
| 239 |
+
ood_results = ood_results.set_index("model_name")
|
| 240 |
+
ood_results = ood_results.drop(
|
| 241 |
+
columns=["exp_name", "accuracy", "f1", "precision", "recall"]
|
| 242 |
+
)
|
| 243 |
+
ood_results.columns = ["seed", "Adversarial"]
|
| 244 |
+
|
| 245 |
+
ood_results_avg = ood_results.groupby(["model_name"]).mean()
|
| 246 |
+
ood_results_std = ood_results.groupby(["model_name"]).std()
|
| 247 |
+
|
| 248 |
+
# filters
|
| 249 |
+
show_diff = st.sidebar.checkbox("Show Diff", value=False)
|
| 250 |
+
sort_by_size = st.sidebar.checkbox("Sort by size", value=False)
|
| 251 |
+
split_chat_models = st.sidebar.checkbox("Split chat models", value=False)
|
| 252 |
+
add_mean = st.sidebar.checkbox("Add mean", value=False)
|
| 253 |
+
show_std = st.sidebar.checkbox("Show std", value=False)
|
| 254 |
+
model_size_train = st.sidebar.slider(
|
| 255 |
+
"Train Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
|
| 256 |
+
)
|
| 257 |
+
model_size_test = st.sidebar.slider(
|
| 258 |
+
"Test Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
|
| 259 |
+
)
|
| 260 |
+
is_chat_train = st.sidebar.selectbox("(Train) Is Chat?", [True, False, "Both"], index=2)
|
| 261 |
+
is_chat_test = st.sidebar.selectbox("(Test) Is Chat?", [True, False, "Both"], index=2)
|
| 262 |
+
model_family_train = st.sidebar.multiselect(
|
| 263 |
+
"Model Family Train",
|
| 264 |
+
MODEL_FAMILES,
|
| 265 |
+
default=MODEL_FAMILES,
|
| 266 |
+
)
|
| 267 |
+
model_family_test = st.sidebar.multiselect(
|
| 268 |
+
"Model Family Test",
|
| 269 |
+
list(MODEL_FAMILES) + ["Adversarial"],
|
| 270 |
+
default=MODEL_FAMILES,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
add_adversarial = False
|
| 274 |
+
if "Adversarial" in model_family_test:
|
| 275 |
+
model_family_test.remove("Adversarial")
|
| 276 |
+
add_adversarial = True
|
| 277 |
+
|
| 278 |
+
sort_by_adversarial = False
|
| 279 |
+
if add_adversarial:
|
| 280 |
+
sort_by_adversarial = st.sidebar.checkbox("Sort by adversarial", value=False)
|
| 281 |
+
|
| 282 |
+
if st.sidebar.checkbox("Use default color scale", value=False):
|
| 283 |
+
color_scale = "Viridis_r"
|
| 284 |
+
else:
|
| 285 |
+
color_scale = viridis_rgb
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
is_debug = st.sidebar.checkbox("Debug", value=False)
|
| 289 |
+
|
| 290 |
+
if show_std:
|
| 291 |
+
selected_df = df_std.copy()
|
| 292 |
+
else:
|
| 293 |
+
selected_df = df.copy()
|
| 294 |
+
|
| 295 |
+
if show_diff:
|
| 296 |
+
# get those 3 columns {'model_size', 'model_family', 'is_chat'}
|
| 297 |
+
columns_to_keep = ["model_size", "model_family", "is_chat"]
|
| 298 |
+
to_be_added = selected_df[columns_to_keep]
|
| 299 |
+
selected_df = selected_df.drop(columns=columns_to_keep)
|
| 300 |
+
selected_df = selected_df.sub(selected_df.values.diagonal(), axis=1)
|
| 301 |
+
selected_df = selected_df.join(to_be_added)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
filtered_df = filter_df(
|
| 305 |
+
selected_df,
|
| 306 |
+
model_family_train,
|
| 307 |
+
model_family_test,
|
| 308 |
+
model_size_train,
|
| 309 |
+
model_size_test,
|
| 310 |
+
is_chat_train,
|
| 311 |
+
is_chat_test,
|
| 312 |
+
sort_by_size,
|
| 313 |
+
split_chat_models,
|
| 314 |
+
is_debug,
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
# subtract each row by the diagonal
|
| 319 |
+
|
| 320 |
+
# if show_diff:
|
| 321 |
+
# filtered_df = filtered_df.sub(filtered_df.values.diagonal(), axis=1)
|
| 322 |
+
if add_adversarial:
|
| 323 |
+
filtered_df = filtered_df.join(ood_results_avg)
|
| 324 |
+
|
| 325 |
+
if add_mean:
|
| 326 |
+
col_mean = filtered_df.mean(axis=1)
|
| 327 |
+
row_mean = filtered_df.mean(axis=0)
|
| 328 |
+
diag = filtered_df.values.diagonal()
|
| 329 |
+
filtered_df["mean"] = col_mean
|
| 330 |
+
filtered_df.loc["mean"] = row_mean
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
filtered_df = filtered_df * 100
|
| 334 |
+
filtered_df = filtered_df.round(0)
|
| 335 |
+
|
| 336 |
+
# sort by the column called Adversarial
|
| 337 |
+
if sort_by_adversarial:
|
| 338 |
+
filtered_df = filtered_df.sort_values(by=["Adversarial"], ascending=False)
|
| 339 |
+
|
| 340 |
+
# check if the df has columns and rows
|
| 341 |
+
if filtered_df.shape[0] == 0:
|
| 342 |
+
st.write("No results found")
|
| 343 |
+
st.stop()
|
| 344 |
+
|
| 345 |
+
if filtered_df.shape[1] == 0:
|
| 346 |
+
st.write("No results found")
|
| 347 |
+
st.stop()
|
| 348 |
+
|
| 349 |
+
fig = px.imshow(
|
| 350 |
+
filtered_df.values,
|
| 351 |
+
x=list(filtered_df.columns),
|
| 352 |
+
y=list(filtered_df.index),
|
| 353 |
+
color_continuous_scale=color_scale,
|
| 354 |
+
contrast_rescaling=None,
|
| 355 |
+
text_auto=True,
|
| 356 |
+
aspect="auto",
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
width = st.sidebar.text_input("Width", "1920")
|
| 361 |
+
height = st.sidebar.text_input("Height", "1080")
|
| 362 |
+
scale = st.sidebar.text_input("Scale", "1.0")
|
| 363 |
+
margin = st.sidebar.text_input("Margin[l,r,b,t]", "200,100,100,100")
|
| 364 |
+
fig.update_traces(textfont_size=9)
|
| 365 |
+
fig.update_layout(
|
| 366 |
+
xaxis={"side": "top"},
|
| 367 |
+
yaxis={"side": "left"},
|
| 368 |
+
margin=dict(
|
| 369 |
+
l=int(margin.split(",")[0]),
|
| 370 |
+
r=int(margin.split(",")[1]),
|
| 371 |
+
b=int(margin.split(",")[2]),
|
| 372 |
+
t=int(margin.split(",")[3]),
|
| 373 |
+
),
|
| 374 |
+
font=dict(size=10),
|
| 375 |
+
)
|
| 376 |
+
fig.update_xaxes(tickangle=45)
|
| 377 |
+
|
| 378 |
+
fig.update_xaxes(tickmode="linear")
|
| 379 |
+
fig.update_yaxes(tickmode="linear")
|
| 380 |
+
# change the font in the heatmap
|
| 381 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
if st.sidebar.button("save", key="save"):
|
| 385 |
+
fig.write_image(
|
| 386 |
+
"fig1.pdf",
|
| 387 |
+
width=int(width),
|
| 388 |
+
height=int(height),
|
| 389 |
+
validate=True,
|
| 390 |
+
scale=float(scale),
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# plot the col mean vs model size
|
| 395 |
+
if add_mean and not show_diff:
|
| 396 |
+
# check if any of the chat models are in the filtered df columns and index
|
| 397 |
+
if len([x for x in CHAT_MODELS if x in filtered_df.columns]) > 0 or len(
|
| 398 |
+
[x for x in CHAT_MODELS if x in filtered_df.index]
|
| 399 |
+
):
|
| 400 |
+
st.warning(
|
| 401 |
+
"Chat models are in the filtered df columns or index."
|
| 402 |
+
"This will cause the mean graph to be skewed."
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
fig3 = px.scatter(
|
| 406 |
+
y=row_mean,
|
| 407 |
+
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
|
| 408 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
| 409 |
+
color=[
|
| 410 |
+
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
|
| 411 |
+
],
|
| 412 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 413 |
+
title="",
|
| 414 |
+
# x axis title
|
| 415 |
+
labels={
|
| 416 |
+
"x": "Target Model Size",
|
| 417 |
+
"y": "Average ROC AUC",
|
| 418 |
+
"color": "Model Family",
|
| 419 |
+
},
|
| 420 |
+
log_x=True,
|
| 421 |
+
trendline="ols",
|
| 422 |
+
)
|
| 423 |
+
fig4 = px.scatter(
|
| 424 |
+
y=diag,
|
| 425 |
+
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
|
| 426 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
| 427 |
+
color=[
|
| 428 |
+
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
|
| 429 |
+
],
|
| 430 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 431 |
+
title="",
|
| 432 |
+
# x axis title
|
| 433 |
+
labels={
|
| 434 |
+
"x": "Target Model Size",
|
| 435 |
+
"y": "Self ROC AUC",
|
| 436 |
+
"color": "Model Family",
|
| 437 |
+
},
|
| 438 |
+
log_x=True,
|
| 439 |
+
trendline="ols",
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# put the two plots side by side
|
| 443 |
+
fig_subplot = make_subplots(
|
| 444 |
+
rows=1,
|
| 445 |
+
cols=2,
|
| 446 |
+
shared_yaxes=False,
|
| 447 |
+
subplot_titles=("Self Detection ROC AUC", "Average Target ROC AUC"),
|
| 448 |
+
)
|
| 449 |
+
for i, figure in enumerate([fig4, fig3]):
|
| 450 |
+
for trace in range(len(figure["data"])):
|
| 451 |
+
trace_data = figure["data"][trace]
|
| 452 |
+
if i == 1:
|
| 453 |
+
trace_data["showlegend"] = False
|
| 454 |
+
fig_subplot.append_trace(trace_data, row=1, col=i + 1)
|
| 455 |
+
|
| 456 |
+
fig_subplot.update_xaxes(type="log")
|
| 457 |
+
# y axis range
|
| 458 |
+
fig_subplot.update_yaxes(range=[0.90, 1])
|
| 459 |
+
|
| 460 |
+
fig_subplot.update_layout(
|
| 461 |
+
height=500,
|
| 462 |
+
width=1200,
|
| 463 |
+
)
|
| 464 |
+
# put the legend on the bottom
|
| 465 |
+
fig_subplot.update_layout(
|
| 466 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.2, x=0.09)
|
| 467 |
+
)
|
| 468 |
+
st.plotly_chart(fig_subplot, use_container_width=True)
|
| 469 |
+
|
| 470 |
+
fig2 = px.scatter(
|
| 471 |
+
y=col_mean,
|
| 472 |
+
x=[MODELS_SIZE_MAPPING[x] for x in filtered_df.index if x not in ["mean"]],
|
| 473 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
| 474 |
+
color=[
|
| 475 |
+
MODELS_FAMILY_MAPPING[x] for x in filtered_df.index if x not in ["mean"]
|
| 476 |
+
],
|
| 477 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
| 478 |
+
title="Mean vs Train Model Size",
|
| 479 |
+
log_x=True,
|
| 480 |
+
trendline="ols",
|
| 481 |
+
)
|
| 482 |
+
fig2.update_layout(
|
| 483 |
+
height=600,
|
| 484 |
+
width=900,
|
| 485 |
+
)
|
| 486 |
+
st.plotly_chart(fig2, use_container_width=False)
|
deberta_results.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
exp_utils.py
ADDED
|
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# LLAMA2
|
| 2 |
+
# <s>[INST] <<SYS>>
|
| 3 |
+
# {{ system_prompt }}
|
| 4 |
+
# <</SYS>>
|
| 5 |
+
|
| 6 |
+
# {{ user_msg_1 }} [/INST] {{ model_answer_1 }} </s><s>[INST] {{ user_msg_2 }} [/INST]
|
| 7 |
+
|
| 8 |
+
ZERO_SHOT_PROMPT = """A chat between a curious human and an artificial intelligence assistant.
|
| 9 |
+
The assistant gives helpful, detailed, and polite answers to the human's questions.
|
| 10 |
+
Human: {{ user_message }}
|
| 11 |
+
Assistant: """
|
| 12 |
+
|
| 13 |
+
ZERO_SHOT_STOPWORD = "Human:"
|
| 14 |
+
|
| 15 |
+
LM_PROMPT = """Give the best continuation of the following text: {{ user_message }}"""
|
| 16 |
+
|
| 17 |
+
LLAMA2_PROMPT = """<s>[INST] <<SYS>>
|
| 18 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
| 19 |
+
|
| 20 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
| 21 |
+
<</SYS>>
|
| 22 |
+
|
| 23 |
+
{{ user_message }} [/INST] """
|
| 24 |
+
|
| 25 |
+
LLAMA2_STOPWORD = "</s>"
|
| 26 |
+
|
| 27 |
+
MPT_PROMPT_7B = """<|im_start|>system
|
| 28 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
| 29 |
+
- You answer questions.
|
| 30 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
| 31 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
|
| 32 |
+
<|im_start|>user
|
| 33 |
+
{{ user_message }}<|im_end|>
|
| 34 |
+
<|im_start|>assistant
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
MPT_LM_PROMPT_7B = """<|im_start|>system
|
| 38 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
| 39 |
+
- You answer questions.
|
| 40 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
| 41 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
|
| 42 |
+
<|im_start|>user
|
| 43 |
+
{{ user_message }}<|im_end|>
|
| 44 |
+
<|im_start|>assistant
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
MPT_PROMPT_30B = """<|im_start|>system
|
| 48 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.<|im_end|>
|
| 49 |
+
<|im_start|>user
|
| 50 |
+
{{ user_message }}<|im_end|>
|
| 51 |
+
<|im_start|>assistant
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
MPT_STOPWORD = "<|im_end|>"
|
| 55 |
+
|
| 56 |
+
FALCON_PROMPT = """The following is a conversation between a highly knowledgeable and intelligent AI assistant, called Falcon, and a human user, called User. In the following interactions, User and Falcon will converse in natural language, and Falcon will answer User's questions. Falcon was built to be respectful, polite and inclusive. Falcon was built by the Technology Innovation Institute in Abu Dhabi. Falcon will never decline to answer a question, and always attempts to give an answer that User would be satisfied with. It knows a lot, and always tells the truth. The conversation begins.
|
| 57 |
+
User: {{ user_message }}
|
| 58 |
+
Falcon: """
|
| 59 |
+
|
| 60 |
+
FALCON_STOPWORD = "User:"
|
| 61 |
+
|
| 62 |
+
ALFRED_PROMPT = """Alfred is a large language model trained by LightOn. Knowledge cutoff: November 2022. Current date: 31 July, 2023
|
| 63 |
+
|
| 64 |
+
User: {{ user_message }}
|
| 65 |
+
Alfred: """
|
| 66 |
+
|
| 67 |
+
ALFRED_STOPWORD = "User:"
|
| 68 |
+
|
| 69 |
+
VICUNA_PROMPT = """A chat between a curious user and an artificial intelligence assistant.
|
| 70 |
+
The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {{ user_message }} ASSISTANT: """
|
| 71 |
+
|
| 72 |
+
VICUNA_STOPWORD = ""
|
| 73 |
+
|
| 74 |
+
MODELS = {
|
| 75 |
+
################################################
|
| 76 |
+
# llama-2 #
|
| 77 |
+
################################################
|
| 78 |
+
"llama-2-70b": {
|
| 79 |
+
"name": "llama-2-70b",
|
| 80 |
+
"model_name": "NousResearch/llama-2-70b-hf",
|
| 81 |
+
"model_path": "NousResearch-llama-2-70b-hf",
|
| 82 |
+
"num_gpus": 4,
|
| 83 |
+
"batch_size": 2,
|
| 84 |
+
"is_chat": False,
|
| 85 |
+
"max_total_tokens": 2048,
|
| 86 |
+
"max_input_length": 1024,
|
| 87 |
+
"max_batch_prefill_tokens": 1024,
|
| 88 |
+
"to_be_quantized": True,
|
| 89 |
+
"to_be_watermarked": True,
|
| 90 |
+
"model_size": 70e9,
|
| 91 |
+
"model_family": "llama-2",
|
| 92 |
+
},
|
| 93 |
+
"llama-2-13b": {
|
| 94 |
+
"name": "llama-2-13b",
|
| 95 |
+
"model_name": "NousResearch/llama-2-13b-hf",
|
| 96 |
+
"model_path": "NousResearch-llama-2-13b-hf",
|
| 97 |
+
"num_gpus": 2,
|
| 98 |
+
"batch_size": 8,
|
| 99 |
+
"is_chat": False,
|
| 100 |
+
"max_total_tokens": 2048,
|
| 101 |
+
"max_input_length": 1024,
|
| 102 |
+
"max_batch_prefill_tokens": 1024,
|
| 103 |
+
"to_be_quantized": True,
|
| 104 |
+
"to_be_watermarked": True,
|
| 105 |
+
"model_size": 13e9,
|
| 106 |
+
"model_family": "llama-2",
|
| 107 |
+
},
|
| 108 |
+
"llama-2-7b": {
|
| 109 |
+
"name": "llama-2-7b",
|
| 110 |
+
"model_name": "NousResearch/llama-2-7b-hf",
|
| 111 |
+
"model_path": "NousResearch-llama-2-7b-hf",
|
| 112 |
+
"num_gpus": 1,
|
| 113 |
+
"batch_size": 4,
|
| 114 |
+
"is_chat": False,
|
| 115 |
+
"max_total_tokens": 2048,
|
| 116 |
+
"max_input_length": 1024,
|
| 117 |
+
"max_batch_prefill_tokens": 1024,
|
| 118 |
+
"to_be_quantized": True,
|
| 119 |
+
"to_be_watermarked": True,
|
| 120 |
+
"model_size": 7e9,
|
| 121 |
+
"model_family": "llama-2",
|
| 122 |
+
},
|
| 123 |
+
################################################
|
| 124 |
+
# llama-2 #
|
| 125 |
+
################################################
|
| 126 |
+
"llama-2-70b-chat": {
|
| 127 |
+
"name": "llama-2-70b-chat",
|
| 128 |
+
"model_name": "NousResearch/llama-2-70b-chat-hf",
|
| 129 |
+
"model_path": "NousResearch-llama-2-70b-chat-hf",
|
| 130 |
+
"num_gpus": 4,
|
| 131 |
+
"batch_size": 2,
|
| 132 |
+
"is_chat": True,
|
| 133 |
+
"prompt": LLAMA2_PROMPT,
|
| 134 |
+
"stopword": LLAMA2_STOPWORD,
|
| 135 |
+
"max_total_tokens": 2048,
|
| 136 |
+
"max_input_length": 1024,
|
| 137 |
+
"max_batch_prefill_tokens": 1024,
|
| 138 |
+
"model_size": 70e9,
|
| 139 |
+
"model_family": "llama-2",
|
| 140 |
+
},
|
| 141 |
+
"llama-2-13b-chat": {
|
| 142 |
+
"name": "llama-2-13b-chat",
|
| 143 |
+
"model_name": "NousResearch/llama-2-13b-chat-hf",
|
| 144 |
+
"model_path": "NousResearch-llama-2-13b-chat-hf",
|
| 145 |
+
"num_gpus": 2,
|
| 146 |
+
"batch_size": 8,
|
| 147 |
+
"is_chat": True,
|
| 148 |
+
"prompt": LLAMA2_PROMPT,
|
| 149 |
+
"stopword": LLAMA2_STOPWORD,
|
| 150 |
+
"max_total_tokens": 2048,
|
| 151 |
+
"max_input_length": 1024,
|
| 152 |
+
"max_batch_prefill_tokens": 1024,
|
| 153 |
+
"model_size": 13e9,
|
| 154 |
+
"model_family": "llama-2",
|
| 155 |
+
},
|
| 156 |
+
"llama-2-7b-chat": {
|
| 157 |
+
"name": "llama-2-7b-chat",
|
| 158 |
+
"model_name": "NousResearch/llama-2-7b-chat-hf",
|
| 159 |
+
"model_path": "NousResearch-llama-2-7b-chat-hf",
|
| 160 |
+
"num_gpus": 1,
|
| 161 |
+
"batch_size": 4,
|
| 162 |
+
"is_chat": True,
|
| 163 |
+
"prompt": LLAMA2_PROMPT,
|
| 164 |
+
"stopword": LLAMA2_STOPWORD,
|
| 165 |
+
"max_total_tokens": 2048,
|
| 166 |
+
"max_input_length": 1024,
|
| 167 |
+
"max_batch_prefill_tokens": 1024,
|
| 168 |
+
"model_size": 7e9,
|
| 169 |
+
"model_family": "llama-2",
|
| 170 |
+
},
|
| 171 |
+
################################################
|
| 172 |
+
# llama-1 #
|
| 173 |
+
################################################
|
| 174 |
+
"llama-65b": {
|
| 175 |
+
"name": "llama-65b",
|
| 176 |
+
"model_name": "huggyllama/llama-65b",
|
| 177 |
+
"model_path": "huggyllama-llama-65b",
|
| 178 |
+
"num_gpus": 4,
|
| 179 |
+
"batch_size": 2,
|
| 180 |
+
"is_chat": False,
|
| 181 |
+
"max_total_tokens": 2048,
|
| 182 |
+
"max_input_length": 1024,
|
| 183 |
+
"max_batch_prefill_tokens": 1024,
|
| 184 |
+
"to_be_quantized": True,
|
| 185 |
+
"to_be_watermarked": True,
|
| 186 |
+
"model_size": 65e9,
|
| 187 |
+
"model_family": "llama-1",
|
| 188 |
+
},
|
| 189 |
+
"llama-30b": {
|
| 190 |
+
"name": "llama-30b",
|
| 191 |
+
"model_name": "huggyllama/llama-30b",
|
| 192 |
+
"model_path": "huggyllama-llama-30b",
|
| 193 |
+
"num_gpus": 2,
|
| 194 |
+
"batch_size": 2,
|
| 195 |
+
"is_chat": False,
|
| 196 |
+
"max_total_tokens": 2048,
|
| 197 |
+
"max_input_length": 1024,
|
| 198 |
+
"max_batch_prefill_tokens": 1024,
|
| 199 |
+
"to_be_quantized": True,
|
| 200 |
+
"to_be_watermarked": True,
|
| 201 |
+
"model_size": 30e9,
|
| 202 |
+
"model_family": "llama-1",
|
| 203 |
+
},
|
| 204 |
+
"llama-13b": {
|
| 205 |
+
"name": "llama-13b",
|
| 206 |
+
"model_name": "huggyllama/llama-13b",
|
| 207 |
+
"model_path": "huggyllama-llama-13b",
|
| 208 |
+
"num_gpus": 2,
|
| 209 |
+
"batch_size": 8,
|
| 210 |
+
"is_chat": False,
|
| 211 |
+
"max_total_tokens": 2048,
|
| 212 |
+
"max_input_length": 1024,
|
| 213 |
+
"max_batch_prefill_tokens": 1024,
|
| 214 |
+
"to_be_quantized": True,
|
| 215 |
+
"to_be_watermarked": True,
|
| 216 |
+
"model_size": 13e9,
|
| 217 |
+
"model_family": "llama-1",
|
| 218 |
+
},
|
| 219 |
+
"llama-7b": {
|
| 220 |
+
"name": "llama-7b",
|
| 221 |
+
"model_name": "huggyllama/llama-7b",
|
| 222 |
+
"model_path": "huggyllama-llama-7b",
|
| 223 |
+
"num_gpus": 1,
|
| 224 |
+
"batch_size": 4,
|
| 225 |
+
"is_chat": False,
|
| 226 |
+
"max_total_tokens": 2048,
|
| 227 |
+
"max_input_length": 1024,
|
| 228 |
+
"max_batch_prefill_tokens": 1024,
|
| 229 |
+
"to_be_quantized": True,
|
| 230 |
+
"to_be_watermarked": True,
|
| 231 |
+
"model_size": 7e9,
|
| 232 |
+
"model_family": "llama-1",
|
| 233 |
+
},
|
| 234 |
+
################################################
|
| 235 |
+
# OPT #
|
| 236 |
+
################################################
|
| 237 |
+
"opt-66b": {
|
| 238 |
+
"name": "opt-66b",
|
| 239 |
+
"model_name": "facebook/opt-66b",
|
| 240 |
+
"model_path": "facebook-opt-66b",
|
| 241 |
+
"num_gpus": 4,
|
| 242 |
+
"batch_size": 2,
|
| 243 |
+
"is_chat": False,
|
| 244 |
+
"max_total_tokens": 1024,
|
| 245 |
+
"max_input_length": 256,
|
| 246 |
+
"max_batch_prefill_tokens": 1024,
|
| 247 |
+
"model_size": 66e9,
|
| 248 |
+
"model_family": "opt",
|
| 249 |
+
},
|
| 250 |
+
"opt-30b": {
|
| 251 |
+
"name": "opt-30b",
|
| 252 |
+
"model_name": "facebook/opt-30b",
|
| 253 |
+
"model_path": "facebook-opt-30b",
|
| 254 |
+
"num_gpus": 4,
|
| 255 |
+
"batch_size": 1,
|
| 256 |
+
"is_chat": False,
|
| 257 |
+
"no_api": True,
|
| 258 |
+
"model_size": 30e9,
|
| 259 |
+
"model_family": "opt",
|
| 260 |
+
},
|
| 261 |
+
"opt-13b": {
|
| 262 |
+
"name": "opt-13b",
|
| 263 |
+
"model_name": "facebook/opt-13b",
|
| 264 |
+
"model_path": "facebook-opt-13b",
|
| 265 |
+
"num_gpus": 2,
|
| 266 |
+
"batch_size": 1,
|
| 267 |
+
"is_chat": False,
|
| 268 |
+
"no_api": True,
|
| 269 |
+
"model_size": 13e9,
|
| 270 |
+
"model_family": "opt",
|
| 271 |
+
},
|
| 272 |
+
"opt-6.7b": {
|
| 273 |
+
"name": "opt-6.7b",
|
| 274 |
+
"model_name": "facebook/opt-6.7b",
|
| 275 |
+
"model_path": "facebook-opt-6.7b",
|
| 276 |
+
"num_gpus": 1,
|
| 277 |
+
"batch_size": 4,
|
| 278 |
+
"is_chat": False,
|
| 279 |
+
"no_api": True,
|
| 280 |
+
"model_size": 6.7e9,
|
| 281 |
+
"model_family": "opt",
|
| 282 |
+
},
|
| 283 |
+
"opt-2.7b": {
|
| 284 |
+
"name": "opt-2.7b",
|
| 285 |
+
"model_name": "facebook/opt-2.7b",
|
| 286 |
+
"model_path": "facebook-opt-2.7b",
|
| 287 |
+
"num_gpus": 1,
|
| 288 |
+
"batch_size": 16,
|
| 289 |
+
"is_chat": False,
|
| 290 |
+
"max_total_tokens": 1024,
|
| 291 |
+
"max_input_length": 256,
|
| 292 |
+
"max_batch_prefill_tokens": 4096,
|
| 293 |
+
"model_size": 2.7e9,
|
| 294 |
+
"model_family": "opt",
|
| 295 |
+
},
|
| 296 |
+
"opt-1.3b": {
|
| 297 |
+
"name": "opt-1.3b",
|
| 298 |
+
"model_name": "facebook/opt-1.3b",
|
| 299 |
+
"model_path": "facebook-opt-1.3b",
|
| 300 |
+
"num_gpus": 1,
|
| 301 |
+
"batch_size": 16,
|
| 302 |
+
"is_chat": False,
|
| 303 |
+
"use_flash_attention": True,
|
| 304 |
+
"max_total_tokens": 1024,
|
| 305 |
+
"max_input_length": 256,
|
| 306 |
+
"max_batch_prefill_tokens": 4096,
|
| 307 |
+
"model_size": 1.3e9,
|
| 308 |
+
"model_family": "opt",
|
| 309 |
+
},
|
| 310 |
+
"opt-350m": {
|
| 311 |
+
"name": "opt-350m",
|
| 312 |
+
"model_name": "facebook/opt-350m",
|
| 313 |
+
"model_path": "facebook-opt-350m",
|
| 314 |
+
"num_gpus": 1,
|
| 315 |
+
"batch_size": 16,
|
| 316 |
+
"is_chat": False,
|
| 317 |
+
"no_api": True,
|
| 318 |
+
"model_size": 350e6,
|
| 319 |
+
"model_family": "opt",
|
| 320 |
+
},
|
| 321 |
+
"opt-125m": {
|
| 322 |
+
"name": "opt-125m",
|
| 323 |
+
"model_name": "facebook/opt-125m",
|
| 324 |
+
"model_path": "facebook-opt-125m",
|
| 325 |
+
"num_gpus": 1,
|
| 326 |
+
"batch_size": 16,
|
| 327 |
+
"is_chat": False,
|
| 328 |
+
"max_total_tokens": 1024,
|
| 329 |
+
"max_input_length": 256,
|
| 330 |
+
"max_batch_prefill_tokens": 4096,
|
| 331 |
+
"model_size": 125e6,
|
| 332 |
+
"model_family": "opt",
|
| 333 |
+
},
|
| 334 |
+
################################################
|
| 335 |
+
# MPT #
|
| 336 |
+
################################################
|
| 337 |
+
"mpt-30b": {
|
| 338 |
+
"name": "mpt-30b",
|
| 339 |
+
"model_name": "mosaicml/mpt-30b",
|
| 340 |
+
"model_path": "mosaicml-mpt-30b",
|
| 341 |
+
"num_gpus": 2,
|
| 342 |
+
"batch_size": 2,
|
| 343 |
+
"is_chat": False,
|
| 344 |
+
"max_total_tokens": 2048,
|
| 345 |
+
"max_input_length": 1024,
|
| 346 |
+
"max_batch_prefill_tokens": 1024,
|
| 347 |
+
"model_size": 30e9,
|
| 348 |
+
"model_family": "mpt",
|
| 349 |
+
},
|
| 350 |
+
"mpt-7b": {
|
| 351 |
+
"name": "mpt-7b",
|
| 352 |
+
"model_name": "mosaicml/mpt-7b",
|
| 353 |
+
"model_path": "mosaicml-mpt-7b",
|
| 354 |
+
"num_gpus": 1,
|
| 355 |
+
"batch_size": 4,
|
| 356 |
+
"is_chat": False,
|
| 357 |
+
"max_total_tokens": 2048,
|
| 358 |
+
"max_input_length": 1024,
|
| 359 |
+
"max_batch_prefill_tokens": 4096,
|
| 360 |
+
"model_size": 7e9,
|
| 361 |
+
"model_family": "mpt",
|
| 362 |
+
},
|
| 363 |
+
################################################
|
| 364 |
+
# MPT-Chat #
|
| 365 |
+
################################################
|
| 366 |
+
"mpt-30b-chat": {
|
| 367 |
+
"name": "mpt-30b-chat",
|
| 368 |
+
"model_name": "mosaicml/mpt-30b-chat",
|
| 369 |
+
"model_path": "mosaicml-mpt-30b-chat",
|
| 370 |
+
"num_gpus": 2,
|
| 371 |
+
"batch_size": 2,
|
| 372 |
+
"is_chat": True,
|
| 373 |
+
"prompt": MPT_PROMPT_30B,
|
| 374 |
+
"stopword": MPT_STOPWORD,
|
| 375 |
+
"max_total_tokens": 1024,
|
| 376 |
+
"max_input_length": 256,
|
| 377 |
+
"max_batch_prefill_tokens": 4096,
|
| 378 |
+
"model_size": 30e9,
|
| 379 |
+
"model_family": "mpt",
|
| 380 |
+
},
|
| 381 |
+
"mpt-7b-chat": {
|
| 382 |
+
"name": "mpt-7b-chat",
|
| 383 |
+
"model_name": "mosaicml/mpt-7b-chat",
|
| 384 |
+
"model_path": "mosaicml-mpt-7b-chat",
|
| 385 |
+
"num_gpus": 1,
|
| 386 |
+
"batch_size": 4,
|
| 387 |
+
"is_chat": True,
|
| 388 |
+
"prompt": MPT_PROMPT_7B,
|
| 389 |
+
"stopword": MPT_STOPWORD,
|
| 390 |
+
"max_total_tokens": 2048,
|
| 391 |
+
"max_input_length": 1024,
|
| 392 |
+
"max_batch_prefill_tokens": 4096,
|
| 393 |
+
"model_size": 7e9,
|
| 394 |
+
"model_family": "mpt",
|
| 395 |
+
},
|
| 396 |
+
################################################
|
| 397 |
+
# OPENLLAMA #
|
| 398 |
+
################################################
|
| 399 |
+
"openllama-13b": {
|
| 400 |
+
"name": "openllama-13b",
|
| 401 |
+
"model_name": "openlm-research/open_llama_13b",
|
| 402 |
+
"model_path": "openlm-research-open_llama_13b",
|
| 403 |
+
"num_gpus": 2,
|
| 404 |
+
"batch_size": 8,
|
| 405 |
+
"is_chat": False,
|
| 406 |
+
"max_total_tokens": 2048,
|
| 407 |
+
"max_input_length": 1024,
|
| 408 |
+
"max_batch_prefill_tokens": 4096,
|
| 409 |
+
"model_size": 13e9,
|
| 410 |
+
"model_family": "openllama",
|
| 411 |
+
},
|
| 412 |
+
"openllama-7b": {
|
| 413 |
+
"name": "openllama-7b",
|
| 414 |
+
"model_name": "openlm-research/open_llama_7b",
|
| 415 |
+
"model_path": "openlm-research-open_llama_7b",
|
| 416 |
+
"num_gpus": 1,
|
| 417 |
+
"batch_size": 8,
|
| 418 |
+
"is_chat": False,
|
| 419 |
+
"max_total_tokens": 2048,
|
| 420 |
+
"max_input_length": 1024,
|
| 421 |
+
"max_batch_prefill_tokens": 4096,
|
| 422 |
+
"model_size": 7e9,
|
| 423 |
+
"model_family": "openllama",
|
| 424 |
+
},
|
| 425 |
+
"openllama-3b": {
|
| 426 |
+
"name": "openllama-3b",
|
| 427 |
+
"model_name": "openlm-research/open_llama_3b",
|
| 428 |
+
"model_path": "openlm-research-open_llama_3b",
|
| 429 |
+
"num_gpus": 1,
|
| 430 |
+
"batch_size": 16,
|
| 431 |
+
"is_chat": False,
|
| 432 |
+
"use_flash_attention": False,
|
| 433 |
+
"max_total_tokens": 2048,
|
| 434 |
+
"max_input_length": 1024,
|
| 435 |
+
"max_batch_prefill_tokens": 4096,
|
| 436 |
+
"model_size": 3e9,
|
| 437 |
+
"model_family": "openllama",
|
| 438 |
+
},
|
| 439 |
+
################################################
|
| 440 |
+
# OPENLLAMA-2 #
|
| 441 |
+
################################################
|
| 442 |
+
# "openllama-2-13b": {
|
| 443 |
+
# "name": "openllama-2-13b",
|
| 444 |
+
# "model_name": "openlm-research/open_llama_13b_v2",
|
| 445 |
+
# "model_path": "openlm-research-open_llama_13b_v2",
|
| 446 |
+
# "num_gpus": 2,
|
| 447 |
+
# "batch_size": 1,
|
| 448 |
+
# "is_chat": False,
|
| 449 |
+
# },
|
| 450 |
+
"openllama-2-7b": {
|
| 451 |
+
"name": "openllama-2-7b",
|
| 452 |
+
"model_name": "openlm-research/open_llama_7b_v2",
|
| 453 |
+
"model_path": "openlm-research-open_llama_7b_v2",
|
| 454 |
+
"num_gpus": 1,
|
| 455 |
+
"batch_size": 8,
|
| 456 |
+
"is_chat": False,
|
| 457 |
+
"max_total_tokens": 2048,
|
| 458 |
+
"max_input_length": 1024,
|
| 459 |
+
"max_batch_prefill_tokens": 4096,
|
| 460 |
+
"model_size": 7e9,
|
| 461 |
+
"model_family": "openllama-2",
|
| 462 |
+
},
|
| 463 |
+
"openllama-2-3b": {
|
| 464 |
+
"name": "openllama-2-3b",
|
| 465 |
+
"model_name": "openlm-research/open_llama_3b_v2",
|
| 466 |
+
"model_path": "openlm-research-open_llama_3b_v2",
|
| 467 |
+
"num_gpus": 1,
|
| 468 |
+
"batch_size": 16,
|
| 469 |
+
"is_chat": False,
|
| 470 |
+
"use_flash_attention": False,
|
| 471 |
+
"max_total_tokens": 2048,
|
| 472 |
+
"max_input_length": 1024,
|
| 473 |
+
"max_batch_prefill_tokens": 4096,
|
| 474 |
+
"model_size": 3e9,
|
| 475 |
+
"model_family": "openllama-2",
|
| 476 |
+
},
|
| 477 |
+
################################################
|
| 478 |
+
# Pythia #
|
| 479 |
+
################################################
|
| 480 |
+
"pythia-12b": {
|
| 481 |
+
"name": "pythia-12b",
|
| 482 |
+
"model_name": "EleutherAI/pythia-12b",
|
| 483 |
+
"model_path": "EleutherAI-pythia-12b",
|
| 484 |
+
"num_gpus": 2,
|
| 485 |
+
"batch_size": 8,
|
| 486 |
+
"is_chat": False,
|
| 487 |
+
"max_total_tokens": 2048,
|
| 488 |
+
"max_input_length": 1024,
|
| 489 |
+
"max_batch_prefill_tokens": 4096,
|
| 490 |
+
"model_size": 12e9,
|
| 491 |
+
"model_family": "pythia",
|
| 492 |
+
},
|
| 493 |
+
"pythia-6.9b": {
|
| 494 |
+
"name": "pythia-6.9b",
|
| 495 |
+
"model_name": "EleutherAI/pythia-6.9b",
|
| 496 |
+
"model_path": "EleutherAI-pythia-6.9b",
|
| 497 |
+
"num_gpus": 1,
|
| 498 |
+
"batch_size": 8,
|
| 499 |
+
"is_chat": False,
|
| 500 |
+
"max_total_tokens": 2048,
|
| 501 |
+
"max_input_length": 1024,
|
| 502 |
+
"max_batch_prefill_tokens": 4096,
|
| 503 |
+
"model_size": 6.9e9,
|
| 504 |
+
"model_family": "pythia",
|
| 505 |
+
},
|
| 506 |
+
"pythia-2.8b": {
|
| 507 |
+
"name": "pythia-2.8b",
|
| 508 |
+
"model_name": "EleutherAI/pythia-2.8b",
|
| 509 |
+
"model_path": "EleutherAI-pythia-2.8b",
|
| 510 |
+
"num_gpus": 1,
|
| 511 |
+
"batch_size": 16,
|
| 512 |
+
"is_chat": False,
|
| 513 |
+
"max_total_tokens": 2048,
|
| 514 |
+
"max_input_length": 1024,
|
| 515 |
+
"max_batch_prefill_tokens": 4096,
|
| 516 |
+
"model_size": 2.8e9,
|
| 517 |
+
"model_family": "pythia",
|
| 518 |
+
},
|
| 519 |
+
"pythia-1.4b": {
|
| 520 |
+
"name": "pythia-1.4b",
|
| 521 |
+
"model_name": "EleutherAI/pythia-1.4b",
|
| 522 |
+
"model_path": "EleutherAI-pythia-1.4b",
|
| 523 |
+
"num_gpus": 1,
|
| 524 |
+
"batch_size": 16,
|
| 525 |
+
"is_chat": False,
|
| 526 |
+
"max_total_tokens": 2048,
|
| 527 |
+
"max_input_length": 256,
|
| 528 |
+
"max_batch_prefill_tokens": 4096,
|
| 529 |
+
"model_size": 1.4e9,
|
| 530 |
+
"model_family": "pythia",
|
| 531 |
+
},
|
| 532 |
+
"pythia-1b": {
|
| 533 |
+
"name": "pythia-1b",
|
| 534 |
+
"model_name": "EleutherAI/pythia-1b",
|
| 535 |
+
"model_path": "EleutherAI-pythia-1b",
|
| 536 |
+
"num_gpus": 1,
|
| 537 |
+
"batch_size": 1,
|
| 538 |
+
"is_chat": False,
|
| 539 |
+
"use_flash_attention": False,
|
| 540 |
+
"max_total_tokens": 1024,
|
| 541 |
+
"max_input_length": 256,
|
| 542 |
+
"max_batch_prefill_tokens": 4096,
|
| 543 |
+
"model_size": 1e9,
|
| 544 |
+
"model_family": "pythia",
|
| 545 |
+
},
|
| 546 |
+
"pythia-410m": {
|
| 547 |
+
"name": "pythia-410m",
|
| 548 |
+
"model_name": "EleutherAI/pythia-410m",
|
| 549 |
+
"model_path": "EleutherAI-pythia-410m",
|
| 550 |
+
"num_gpus": 1,
|
| 551 |
+
"batch_size": 16,
|
| 552 |
+
"is_chat": False,
|
| 553 |
+
"max_total_tokens": 2048,
|
| 554 |
+
"max_input_length": 1024,
|
| 555 |
+
"max_batch_prefill_tokens": 4096,
|
| 556 |
+
"model_size": 410e6,
|
| 557 |
+
"model_family": "pythia",
|
| 558 |
+
},
|
| 559 |
+
"pythia-160m": {
|
| 560 |
+
"name": "pythia-160m",
|
| 561 |
+
"model_name": "EleutherAI/pythia-160m",
|
| 562 |
+
"model_path": "EleutherAI-pythia-160m",
|
| 563 |
+
"num_gpus": 1,
|
| 564 |
+
"batch_size": 16,
|
| 565 |
+
"is_chat": False,
|
| 566 |
+
"max_total_tokens": 2048,
|
| 567 |
+
"max_input_length": 1024,
|
| 568 |
+
"max_batch_prefill_tokens": 4096,
|
| 569 |
+
"model_size": 160e6,
|
| 570 |
+
"model_family": "pythia",
|
| 571 |
+
},
|
| 572 |
+
"pythia-70m": {
|
| 573 |
+
"name": "pythia-70m",
|
| 574 |
+
"model_name": "EleutherAI/pythia-70m",
|
| 575 |
+
"model_path": "EleutherAI-pythia-70m",
|
| 576 |
+
"num_gpus": 1,
|
| 577 |
+
"batch_size": 16,
|
| 578 |
+
"is_chat": False,
|
| 579 |
+
"max_total_tokens": 2048,
|
| 580 |
+
"max_input_length": 1024,
|
| 581 |
+
"max_batch_prefill_tokens": 4096,
|
| 582 |
+
"model_size": 70e6,
|
| 583 |
+
"model_family": "pythia",
|
| 584 |
+
},
|
| 585 |
+
################################################
|
| 586 |
+
# Pythia-deduped #
|
| 587 |
+
################################################
|
| 588 |
+
"pythia-12b-deduped": {
|
| 589 |
+
"name": "pythia-12b-deduped",
|
| 590 |
+
"model_name": "EleutherAI/pythia-12b-deduped",
|
| 591 |
+
"model_path": "EleutherAI-pythia-12b-deduped",
|
| 592 |
+
"num_gpus": 2,
|
| 593 |
+
"batch_size": 8,
|
| 594 |
+
"is_chat": False,
|
| 595 |
+
"max_total_tokens": 2048,
|
| 596 |
+
"max_input_length": 1024,
|
| 597 |
+
"max_batch_prefill_tokens": 4096,
|
| 598 |
+
"model_family": "pythia-deduped",
|
| 599 |
+
"model_size": 12e9,
|
| 600 |
+
},
|
| 601 |
+
"pythia-6.9b-deduped": {
|
| 602 |
+
"name": "pythia-6.9b-deduped",
|
| 603 |
+
"model_name": "EleutherAI/pythia-6.9b-deduped",
|
| 604 |
+
"model_path": "EleutherAI-pythia-6.9b-deduped",
|
| 605 |
+
"num_gpus": 1,
|
| 606 |
+
"batch_size": 8,
|
| 607 |
+
"is_chat": False,
|
| 608 |
+
"max_total_tokens": 2048,
|
| 609 |
+
"max_input_length": 1024,
|
| 610 |
+
"max_batch_prefill_tokens": 4096,
|
| 611 |
+
"model_family": "pythia-deduped",
|
| 612 |
+
"model_size": 6.9e9,
|
| 613 |
+
},
|
| 614 |
+
"pythia-2.8b-deduped": {
|
| 615 |
+
"name": "pythia-2.8b-deduped",
|
| 616 |
+
"model_name": "EleutherAI/pythia-2.8b-deduped",
|
| 617 |
+
"model_path": "EleutherAI-pythia-2.8b-deduped",
|
| 618 |
+
"num_gpus": 1,
|
| 619 |
+
"batch_size": 16,
|
| 620 |
+
"is_chat": False,
|
| 621 |
+
"max_total_tokens": 2048,
|
| 622 |
+
"max_input_length": 1024,
|
| 623 |
+
"max_batch_prefill_tokens": 4096,
|
| 624 |
+
"model_family": "pythia-deduped",
|
| 625 |
+
"model_size": 2.8e9,
|
| 626 |
+
},
|
| 627 |
+
"pythia-1.4b-deduped": {
|
| 628 |
+
"name": "pythia-1.4b-deduped",
|
| 629 |
+
"model_name": "EleutherAI/pythia-1.4b-deduped",
|
| 630 |
+
"model_path": "EleutherAI-pythia-1.4b-deduped",
|
| 631 |
+
"num_gpus": 1,
|
| 632 |
+
"batch_size": 16,
|
| 633 |
+
"is_chat": False,
|
| 634 |
+
"max_total_tokens": 2048,
|
| 635 |
+
"max_input_length": 1024,
|
| 636 |
+
"max_batch_prefill_tokens": 4096,
|
| 637 |
+
"model_family": "pythia-deduped",
|
| 638 |
+
"model_size": 1.4e9,
|
| 639 |
+
},
|
| 640 |
+
"pythia-1b-deduped": {
|
| 641 |
+
"name": "pythia-1b-deduped",
|
| 642 |
+
"model_name": "EleutherAI/pythia-1b-deduped",
|
| 643 |
+
"model_path": "EleutherAI-pythia-1b-deduped",
|
| 644 |
+
"num_gpus": 1,
|
| 645 |
+
"batch_size": 16,
|
| 646 |
+
"is_chat": False,
|
| 647 |
+
"use_flash_attention": False,
|
| 648 |
+
"max_total_tokens": 2048,
|
| 649 |
+
"max_input_length": 256,
|
| 650 |
+
"max_batch_prefill_tokens": 4096,
|
| 651 |
+
"model_family": "pythia-deduped",
|
| 652 |
+
"model_size": 1e9,
|
| 653 |
+
},
|
| 654 |
+
"pythia-410m-deduped": {
|
| 655 |
+
"name": "pythia-410m-deduped",
|
| 656 |
+
"model_name": "EleutherAI/pythia-410m-deduped",
|
| 657 |
+
"model_path": "EleutherAI-pythia-410m-deduped",
|
| 658 |
+
"num_gpus": 1,
|
| 659 |
+
"batch_size": 16,
|
| 660 |
+
"is_chat": False,
|
| 661 |
+
"max_total_tokens": 2048,
|
| 662 |
+
"max_input_length": 1024,
|
| 663 |
+
"max_batch_prefill_tokens": 4096,
|
| 664 |
+
"model_family": "pythia-deduped",
|
| 665 |
+
"model_size": 410e6,
|
| 666 |
+
},
|
| 667 |
+
"pythia-160m-deduped": {
|
| 668 |
+
"name": "pythia-160m-deduped",
|
| 669 |
+
"model_name": "EleutherAI/pythia-160m-deduped",
|
| 670 |
+
"model_path": "EleutherAI-pythia-160m-deduped",
|
| 671 |
+
"num_gpus": 1,
|
| 672 |
+
"batch_size": 16,
|
| 673 |
+
"is_chat": False,
|
| 674 |
+
"max_total_tokens": 2048,
|
| 675 |
+
"max_input_length": 1024,
|
| 676 |
+
"max_batch_prefill_tokens": 4096,
|
| 677 |
+
"model_family": "pythia-deduped",
|
| 678 |
+
"model_size": 160e6,
|
| 679 |
+
},
|
| 680 |
+
"pythia-70m-deduped": {
|
| 681 |
+
"name": "pythia-70m-deduped",
|
| 682 |
+
"model_name": "EleutherAI/pythia-70m-deduped",
|
| 683 |
+
"model_path": "EleutherAI-pythia-70m-deduped",
|
| 684 |
+
"num_gpus": 1,
|
| 685 |
+
"batch_size": 16,
|
| 686 |
+
"is_chat": False,
|
| 687 |
+
"max_total_tokens": 2048,
|
| 688 |
+
"max_input_length": 1024,
|
| 689 |
+
"max_batch_prefill_tokens": 4096,
|
| 690 |
+
"model_family": "pythia-deduped",
|
| 691 |
+
"model_size": 70e6,
|
| 692 |
+
},
|
| 693 |
+
################################################
|
| 694 |
+
# GPT2 #
|
| 695 |
+
################################################
|
| 696 |
+
"gpt2-xl": {
|
| 697 |
+
"name": "gpt2-xl",
|
| 698 |
+
"model_name": "gpt2-xl",
|
| 699 |
+
"model_path": "gpt2-xl",
|
| 700 |
+
"num_gpus": 1,
|
| 701 |
+
"batch_size": 16,
|
| 702 |
+
"is_chat": False,
|
| 703 |
+
"max_total_tokens": 1024,
|
| 704 |
+
"max_input_length": 256,
|
| 705 |
+
"max_batch_prefill_tokens": 4096,
|
| 706 |
+
"model_size": 1.5e9,
|
| 707 |
+
"model_family": "gpt2",
|
| 708 |
+
},
|
| 709 |
+
"gpt2-large": {
|
| 710 |
+
"name": "gpt2-large",
|
| 711 |
+
"model_name": "gpt2-large",
|
| 712 |
+
"model_path": "gpt2-large",
|
| 713 |
+
"num_gpus": 1,
|
| 714 |
+
"batch_size": 16,
|
| 715 |
+
"is_chat": False,
|
| 716 |
+
"max_total_tokens": 1024,
|
| 717 |
+
"max_input_length": 256,
|
| 718 |
+
"max_batch_prefill_tokens": 4096,
|
| 719 |
+
"model_size": 774e6,
|
| 720 |
+
"model_family": "gpt2",
|
| 721 |
+
},
|
| 722 |
+
"gpt2-medium": {
|
| 723 |
+
"name": "gpt2-medium",
|
| 724 |
+
"model_name": "gpt2-medium",
|
| 725 |
+
"model_path": "gpt2-medium",
|
| 726 |
+
"num_gpus": 1,
|
| 727 |
+
"batch_size": 16,
|
| 728 |
+
"is_chat": False,
|
| 729 |
+
"max_total_tokens": 2048,
|
| 730 |
+
"max_input_length": 1024,
|
| 731 |
+
"max_batch_prefill_tokens": 4096,
|
| 732 |
+
"model_size": 355e6,
|
| 733 |
+
"model_family": "gpt2",
|
| 734 |
+
},
|
| 735 |
+
"gpt2": {
|
| 736 |
+
"name": "gpt2",
|
| 737 |
+
"model_name": "gpt2",
|
| 738 |
+
"model_path": "gpt2",
|
| 739 |
+
"num_gpus": 1,
|
| 740 |
+
"batch_size": 16,
|
| 741 |
+
"is_chat": False,
|
| 742 |
+
"max_total_tokens": 2048,
|
| 743 |
+
"max_input_length": 1024,
|
| 744 |
+
"max_batch_prefill_tokens": 4096,
|
| 745 |
+
"model_size": 124e6,
|
| 746 |
+
"model_family": "gpt2",
|
| 747 |
+
},
|
| 748 |
+
################################################
|
| 749 |
+
# CEREBRAS #
|
| 750 |
+
################################################
|
| 751 |
+
"cerebras-gpt-13b": { # add 2 gpus but sharded equals to false
|
| 752 |
+
"name": "cerebras-gpt-13b",
|
| 753 |
+
"model_name": "cerebras/Cerebras-GPT-13B",
|
| 754 |
+
"model_path": "cerebras-Cerebras-GPT-13B",
|
| 755 |
+
"num_gpus": 1,
|
| 756 |
+
"batch_size": 8,
|
| 757 |
+
"is_chat": False,
|
| 758 |
+
"max_total_tokens": 2048,
|
| 759 |
+
"max_input_length": 1024,
|
| 760 |
+
"max_batch_prefill_tokens": 4096,
|
| 761 |
+
"model_family": "cerebras",
|
| 762 |
+
"model_size": 13e9,
|
| 763 |
+
},
|
| 764 |
+
"cerebras-gpt-6.7b": {
|
| 765 |
+
"name": "cerebras-gpt-6.7b",
|
| 766 |
+
"model_name": "cerebras/Cerebras-GPT-6.7B",
|
| 767 |
+
"model_path": "cerebras-Cerebras-GPT-6.7B",
|
| 768 |
+
"num_gpus": 1,
|
| 769 |
+
"batch_size": 8,
|
| 770 |
+
"is_chat": False,
|
| 771 |
+
"max_total_tokens": 1024,
|
| 772 |
+
"max_input_length": 256,
|
| 773 |
+
"max_batch_prefill_tokens": 4096,
|
| 774 |
+
"model_family": "cerebras",
|
| 775 |
+
"model_size": 6.7e9,
|
| 776 |
+
},
|
| 777 |
+
"cerebras-gpt-2.7b": {
|
| 778 |
+
"name": "cerebras-gpt-2.7b",
|
| 779 |
+
"model_name": "cerebras/Cerebras-GPT-2.7B",
|
| 780 |
+
"model_path": "cerebras-Cerebras-GPT-2.7B",
|
| 781 |
+
"num_gpus": 1,
|
| 782 |
+
"batch_size": 1,
|
| 783 |
+
"is_chat": False,
|
| 784 |
+
"max_total_tokens": 2048,
|
| 785 |
+
"max_input_length": 1024,
|
| 786 |
+
"max_batch_prefill_tokens": 4096,
|
| 787 |
+
"model_family": "cerebras",
|
| 788 |
+
"model_size": 2.7e9,
|
| 789 |
+
},
|
| 790 |
+
"cerebras-gpt-1.3b": {
|
| 791 |
+
"name": "cerebras-gpt-1.3b",
|
| 792 |
+
"model_name": "cerebras/Cerebras-GPT-1.3B",
|
| 793 |
+
"model_path": "cerebras-Cerebras-GPT-1.3B",
|
| 794 |
+
"num_gpus": 1,
|
| 795 |
+
"batch_size": 1,
|
| 796 |
+
"is_chat": False,
|
| 797 |
+
"max_total_tokens": 1024,
|
| 798 |
+
"max_input_length": 256,
|
| 799 |
+
"max_batch_prefill_tokens": 4096,
|
| 800 |
+
"model_family": "cerebras",
|
| 801 |
+
"model_size": 1.3e9,
|
| 802 |
+
},
|
| 803 |
+
"cerebras-gpt-256m": {
|
| 804 |
+
"name": "cerebras-gpt-256m",
|
| 805 |
+
"model_name": "cerebras/Cerebras-GPT-256M",
|
| 806 |
+
"model_path": "cerebras-Cerebras-GPT-256M",
|
| 807 |
+
"num_gpus": 1,
|
| 808 |
+
"batch_size": 16,
|
| 809 |
+
"is_chat": False,
|
| 810 |
+
"max_total_tokens": 2048,
|
| 811 |
+
"max_input_length": 1024,
|
| 812 |
+
"max_batch_prefill_tokens": 4096,
|
| 813 |
+
"model_family": "cerebras",
|
| 814 |
+
"model_size": 256e6,
|
| 815 |
+
},
|
| 816 |
+
"cerebras-gpt-111m": {
|
| 817 |
+
"name": "cerebras-gpt-111m",
|
| 818 |
+
"model_name": "cerebras/Cerebras-GPT-111M",
|
| 819 |
+
"model_path": "cerebras-Cerebras-GPT-111M",
|
| 820 |
+
"num_gpus": 1,
|
| 821 |
+
"batch_size": 16,
|
| 822 |
+
"is_chat": False,
|
| 823 |
+
"max_total_tokens": 2048,
|
| 824 |
+
"max_input_length": 1024,
|
| 825 |
+
"max_batch_prefill_tokens": 4096,
|
| 826 |
+
"model_family": "cerebras",
|
| 827 |
+
"model_size": 111e6,
|
| 828 |
+
},
|
| 829 |
+
################################################
|
| 830 |
+
# Bloom #
|
| 831 |
+
################################################
|
| 832 |
+
"bloom-7.1b": {
|
| 833 |
+
"name": "bloom-7.1b",
|
| 834 |
+
"model_name": "bigscience/bloom-7b1",
|
| 835 |
+
"model_path": "bigscience-bloom-7b1",
|
| 836 |
+
"num_gpus": 1,
|
| 837 |
+
"batch_size": 8,
|
| 838 |
+
"is_chat": False,
|
| 839 |
+
"max_total_tokens": 1024,
|
| 840 |
+
"max_input_length": 256,
|
| 841 |
+
"max_batch_prefill_tokens": 4096,
|
| 842 |
+
"model_size": 7.1e9,
|
| 843 |
+
"model_family": "bloom",
|
| 844 |
+
},
|
| 845 |
+
"bloom-3b": {
|
| 846 |
+
"name": "bloom-3b",
|
| 847 |
+
"model_name": "bigscience/bloom-3b",
|
| 848 |
+
"model_path": "bigscience-bloom-3b",
|
| 849 |
+
"num_gpus": 1,
|
| 850 |
+
"batch_size": 16,
|
| 851 |
+
"is_chat": False,
|
| 852 |
+
"max_total_tokens": 2048,
|
| 853 |
+
"max_input_length": 1024,
|
| 854 |
+
"max_batch_prefill_tokens": 4096,
|
| 855 |
+
"model_size": 3e9,
|
| 856 |
+
"model_family": "bloom",
|
| 857 |
+
},
|
| 858 |
+
"bloom-1.7b": {
|
| 859 |
+
"name": "bloom-1.7b",
|
| 860 |
+
"model_name": "bigscience/bloom-1b7",
|
| 861 |
+
"model_path": "bigscience-bloom-1b7",
|
| 862 |
+
"num_gpus": 1,
|
| 863 |
+
"batch_size": 16,
|
| 864 |
+
"is_chat": False,
|
| 865 |
+
"max_total_tokens": 1024,
|
| 866 |
+
"max_input_length": 256,
|
| 867 |
+
"max_batch_prefill_tokens": 4096,
|
| 868 |
+
"model_size": 1.7e9,
|
| 869 |
+
"model_family": "bloom",
|
| 870 |
+
},
|
| 871 |
+
"bloom-1.1b": {
|
| 872 |
+
"name": "bloom-1.1b",
|
| 873 |
+
"model_name": "bigscience/bloom-1b1",
|
| 874 |
+
"model_path": "bigscience-bloom-1b1",
|
| 875 |
+
"num_gpus": 1,
|
| 876 |
+
"batch_size": 16,
|
| 877 |
+
"is_chat": False,
|
| 878 |
+
"max_total_tokens": 2048,
|
| 879 |
+
"max_input_length": 1024,
|
| 880 |
+
"max_batch_prefill_tokens": 4096,
|
| 881 |
+
"model_size": 1.1e9,
|
| 882 |
+
"model_family": "bloom",
|
| 883 |
+
},
|
| 884 |
+
"bloom-560m": {
|
| 885 |
+
"name": "bloom-560m",
|
| 886 |
+
"model_name": "bigscience/bloom-560m",
|
| 887 |
+
"model_path": "bigscience-bloom-560m",
|
| 888 |
+
"num_gpus": 1,
|
| 889 |
+
"batch_size": 16,
|
| 890 |
+
"is_chat": False,
|
| 891 |
+
"max_total_tokens": 1024,
|
| 892 |
+
"max_input_length": 256,
|
| 893 |
+
"max_batch_prefill_tokens": 4096,
|
| 894 |
+
"model_size": 560e6,
|
| 895 |
+
"model_family": "bloom",
|
| 896 |
+
},
|
| 897 |
+
################################################
|
| 898 |
+
# Falcon #
|
| 899 |
+
################################################
|
| 900 |
+
"falcon-40b": {
|
| 901 |
+
"name": "falcon-40b",
|
| 902 |
+
"model_name": "tiiuae/falcon-40b",
|
| 903 |
+
"model_path": "tiiuae-falcon-40b",
|
| 904 |
+
"num_gpus": 4,
|
| 905 |
+
"batch_size": 4,
|
| 906 |
+
"is_chat": False,
|
| 907 |
+
"max_total_tokens": 2048,
|
| 908 |
+
"max_input_length": 1024,
|
| 909 |
+
"max_batch_prefill_tokens": 4096,
|
| 910 |
+
"model_size": 40e9,
|
| 911 |
+
"model_family": "falcon",
|
| 912 |
+
},
|
| 913 |
+
"falcon-7b": {
|
| 914 |
+
"name": "falcon-7b",
|
| 915 |
+
"model_name": "tiiuae/falcon-7b",
|
| 916 |
+
"model_path": "tiiuae-falcon-7b",
|
| 917 |
+
"num_gpus": 1,
|
| 918 |
+
"batch_size": 8,
|
| 919 |
+
"is_chat": False,
|
| 920 |
+
"max_total_tokens": 2048,
|
| 921 |
+
"max_input_length": 1024,
|
| 922 |
+
"max_batch_prefill_tokens": 4096,
|
| 923 |
+
"model_size": 7e9,
|
| 924 |
+
"model_family": "falcon",
|
| 925 |
+
},
|
| 926 |
+
################################################
|
| 927 |
+
# Falcon-chat #
|
| 928 |
+
################################################
|
| 929 |
+
"falcon-40b-instruct": {
|
| 930 |
+
"name": "falcon-40b-instruct",
|
| 931 |
+
"model_name": "tiiuae/falcon-40b-instruct",
|
| 932 |
+
"model_path": "tiiuae-falcon-40b-instruct",
|
| 933 |
+
"num_gpus": 4,
|
| 934 |
+
"batch_size": 4,
|
| 935 |
+
"is_chat": True,
|
| 936 |
+
"prompt": FALCON_PROMPT,
|
| 937 |
+
"stopword": FALCON_STOPWORD,
|
| 938 |
+
"max_total_tokens": 2048,
|
| 939 |
+
"max_input_length": 1024,
|
| 940 |
+
"max_batch_prefill_tokens": 4096,
|
| 941 |
+
"model_family": "falcon",
|
| 942 |
+
"model_size": 40e9,
|
| 943 |
+
},
|
| 944 |
+
"falcon-7b-instruct": {
|
| 945 |
+
"name": "falcon-7b-instruct",
|
| 946 |
+
"model_name": "tiiuae/falcon-7b-instruct",
|
| 947 |
+
"model_path": "tiiuae-falcon-7b-instruct",
|
| 948 |
+
"num_gpus": 1,
|
| 949 |
+
"batch_size": 5,
|
| 950 |
+
"is_chat": True,
|
| 951 |
+
"prompt": FALCON_PROMPT,
|
| 952 |
+
"stopword": FALCON_STOPWORD,
|
| 953 |
+
"max_total_tokens": 2048,
|
| 954 |
+
"max_input_length": 1024,
|
| 955 |
+
"max_batch_prefill_tokens": 4096,
|
| 956 |
+
"model_family": "falcon",
|
| 957 |
+
"model_size": 7e9,
|
| 958 |
+
},
|
| 959 |
+
"alfred-40b-0723": {
|
| 960 |
+
"name": "alfred-40b-0723",
|
| 961 |
+
"model_name": "lightonai/alfred-40b-0723",
|
| 962 |
+
"model_path": "lightonai-alfred-40b-0723",
|
| 963 |
+
"num_gpus": 4,
|
| 964 |
+
"batch_size": 4,
|
| 965 |
+
"is_chat": True,
|
| 966 |
+
"prompt": ALFRED_PROMPT,
|
| 967 |
+
"stopword": ALFRED_STOPWORD,
|
| 968 |
+
"max_total_tokens": 2048,
|
| 969 |
+
"max_input_length": 1024,
|
| 970 |
+
"max_batch_prefill_tokens": 4096,
|
| 971 |
+
"model_family": "falcon",
|
| 972 |
+
"model_size": 40e9,
|
| 973 |
+
},
|
| 974 |
+
################################################
|
| 975 |
+
# Vicuna v1.3 #
|
| 976 |
+
################################################
|
| 977 |
+
"vicuna-33b-v1.3": {
|
| 978 |
+
"name": "vicuna-33b-v1.3",
|
| 979 |
+
"model_name": "lmsys/vicuna-33b-v1.3",
|
| 980 |
+
"model_path": "lmsys-vicuna-33b-v1.3",
|
| 981 |
+
"num_gpus": 2,
|
| 982 |
+
"batch_size": 2,
|
| 983 |
+
"is_chat": True,
|
| 984 |
+
"prompt": VICUNA_PROMPT,
|
| 985 |
+
"stopword": VICUNA_STOPWORD,
|
| 986 |
+
"max_total_tokens": 2048,
|
| 987 |
+
"max_input_length": 1024,
|
| 988 |
+
"max_batch_prefill_tokens": 4096,
|
| 989 |
+
"model_family": "vicuna",
|
| 990 |
+
"model_size": 33e9,
|
| 991 |
+
},
|
| 992 |
+
"vicuna-13b-v1.3": {
|
| 993 |
+
"name": "vicuna-13b-v1.3",
|
| 994 |
+
"model_name": "lmsys/vicuna-13b-v1.3",
|
| 995 |
+
"model_path": "lmsys-vicuna-13b-v1.3",
|
| 996 |
+
"num_gpus": 2,
|
| 997 |
+
"batch_size": 8,
|
| 998 |
+
"is_chat": True,
|
| 999 |
+
"prompt": VICUNA_PROMPT,
|
| 1000 |
+
"stopword": VICUNA_STOPWORD,
|
| 1001 |
+
"max_total_tokens": 2048,
|
| 1002 |
+
"max_input_length": 1024,
|
| 1003 |
+
"max_batch_prefill_tokens": 4096,
|
| 1004 |
+
"model_family": "vicuna",
|
| 1005 |
+
"model_size": 13e9,
|
| 1006 |
+
},
|
| 1007 |
+
"vicuna-7b-v1.3": {
|
| 1008 |
+
"name": "vicuna-7b-v1.3",
|
| 1009 |
+
"model_name": "lmsys/vicuna-7b-v1.3",
|
| 1010 |
+
"model_path": "lmsys-vicuna-7b-v1.3",
|
| 1011 |
+
"num_gpus": 1,
|
| 1012 |
+
"batch_size": 4,
|
| 1013 |
+
"is_chat": True,
|
| 1014 |
+
"prompt": VICUNA_PROMPT,
|
| 1015 |
+
"stopword": VICUNA_STOPWORD,
|
| 1016 |
+
"max_total_tokens": 2048,
|
| 1017 |
+
"max_input_length": 1024,
|
| 1018 |
+
"max_batch_prefill_tokens": 4096,
|
| 1019 |
+
"model_family": "vicuna",
|
| 1020 |
+
"model_size": 7e9,
|
| 1021 |
+
},
|
| 1022 |
+
}
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
MODEL_FAMILY_PRETRAINING_DATASETS = {
|
| 1026 |
+
"llama-2": ["UNK-commoncrawl"],
|
| 1027 |
+
"llama-1": [
|
| 1028 |
+
"llama",
|
| 1029 |
+
"c4",
|
| 1030 |
+
"github",
|
| 1031 |
+
"wikipedia",
|
| 1032 |
+
"books3",
|
| 1033 |
+
"gutenberg",
|
| 1034 |
+
"arxiv",
|
| 1035 |
+
"stackexchange",
|
| 1036 |
+
],
|
| 1037 |
+
"openllama": [
|
| 1038 |
+
"redpajama",
|
| 1039 |
+
"c4",
|
| 1040 |
+
"github",
|
| 1041 |
+
"wikipedia",
|
| 1042 |
+
"books3",
|
| 1043 |
+
"gutenberg",
|
| 1044 |
+
"arxiv",
|
| 1045 |
+
"stackexchange",
|
| 1046 |
+
],
|
| 1047 |
+
"openllama-2": [
|
| 1048 |
+
"refinedweb",
|
| 1049 |
+
"github",
|
| 1050 |
+
"wikipedia",
|
| 1051 |
+
"books3",
|
| 1052 |
+
"gutenberg",
|
| 1053 |
+
"arxiv",
|
| 1054 |
+
"stackexchange",
|
| 1055 |
+
],
|
| 1056 |
+
"pythia": [
|
| 1057 |
+
"thepile",
|
| 1058 |
+
"pubmed",
|
| 1059 |
+
"books3",
|
| 1060 |
+
"arxiv",
|
| 1061 |
+
"github",
|
| 1062 |
+
"openwebtext2",
|
| 1063 |
+
"freelaw",
|
| 1064 |
+
"wikipedia",
|
| 1065 |
+
"stackexchange",
|
| 1066 |
+
"uspto",
|
| 1067 |
+
"gutenberg",
|
| 1068 |
+
"opensubtitles",
|
| 1069 |
+
"mathematics",
|
| 1070 |
+
"bookcorpus2",
|
| 1071 |
+
"ubuntuIRC",
|
| 1072 |
+
"europarl",
|
| 1073 |
+
"philpapers",
|
| 1074 |
+
"nih-grants" "hackernews",
|
| 1075 |
+
"enron",
|
| 1076 |
+
],
|
| 1077 |
+
"gpt2": ["openwebtext"],
|
| 1078 |
+
"cerebras": [
|
| 1079 |
+
"thepile",
|
| 1080 |
+
"pubmed",
|
| 1081 |
+
"books3",
|
| 1082 |
+
"arxiv",
|
| 1083 |
+
"github",
|
| 1084 |
+
"openwebtext2",
|
| 1085 |
+
"freelaw",
|
| 1086 |
+
"wikipedia",
|
| 1087 |
+
"stackexchange",
|
| 1088 |
+
"uspto",
|
| 1089 |
+
"gutenberg",
|
| 1090 |
+
"opensubtitles",
|
| 1091 |
+
"mathematics",
|
| 1092 |
+
"bookcorpus2",
|
| 1093 |
+
"ubuntuIRC",
|
| 1094 |
+
"europarl",
|
| 1095 |
+
"philpapers",
|
| 1096 |
+
"nih-grants" "hackernews",
|
| 1097 |
+
"enron",
|
| 1098 |
+
],
|
| 1099 |
+
"bloom": [
|
| 1100 |
+
"oscar",
|
| 1101 |
+
"github",
|
| 1102 |
+
"commoncrawl-bloom",
|
| 1103 |
+
],
|
| 1104 |
+
"falcon": [
|
| 1105 |
+
"refinedweb",
|
| 1106 |
+
"pubmed",
|
| 1107 |
+
"books3",
|
| 1108 |
+
"arxiv",
|
| 1109 |
+
"github",
|
| 1110 |
+
"openwebtext2",
|
| 1111 |
+
"freelaw",
|
| 1112 |
+
"wikipedia",
|
| 1113 |
+
"stackexchange",
|
| 1114 |
+
"uspto",
|
| 1115 |
+
"gutenberg",
|
| 1116 |
+
"opensubtitles",
|
| 1117 |
+
"mathematics",
|
| 1118 |
+
"bookcorpus2",
|
| 1119 |
+
"ubuntuIRC",
|
| 1120 |
+
"europarl",
|
| 1121 |
+
"philpapers",
|
| 1122 |
+
"nih-grants" "hackernews",
|
| 1123 |
+
"enron",
|
| 1124 |
+
],
|
| 1125 |
+
"mpt": [
|
| 1126 |
+
"c4",
|
| 1127 |
+
"mc4",
|
| 1128 |
+
"redpajama",
|
| 1129 |
+
"github",
|
| 1130 |
+
"wikipedia",
|
| 1131 |
+
"books3",
|
| 1132 |
+
"gutenberg",
|
| 1133 |
+
"arxiv",
|
| 1134 |
+
"stackexchange",
|
| 1135 |
+
],
|
| 1136 |
+
"opt": [
|
| 1137 |
+
"cc-news",
|
| 1138 |
+
"cc-stories",
|
| 1139 |
+
"thepile",
|
| 1140 |
+
"reddit" "pubmed",
|
| 1141 |
+
"books3",
|
| 1142 |
+
"github",
|
| 1143 |
+
"openwebtext2",
|
| 1144 |
+
"wikipedia",
|
| 1145 |
+
"uspto",
|
| 1146 |
+
"gutenberg",
|
| 1147 |
+
"opensubtitles",
|
| 1148 |
+
"mathematics",
|
| 1149 |
+
"bookcorpus2",
|
| 1150 |
+
"hackernews",
|
| 1151 |
+
],
|
| 1152 |
+
}
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
if __name__ == "__main__":
|
| 1156 |
+
print(len(MODELS))
|
| 1157 |
+
print("\n".join(MODELS.keys()))
|
visualize_utils.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def hex_to_rgb(value):
|
| 5 |
+
"""
|
| 6 |
+
Calculates rgb values from a hex color code.
|
| 7 |
+
|
| 8 |
+
:param (string) value: Hex color string
|
| 9 |
+
|
| 10 |
+
:rtype (tuple) (r_value, g_value, b_value): tuple of rgb values
|
| 11 |
+
"""
|
| 12 |
+
value = value.lstrip("#")
|
| 13 |
+
hex_total_length = len(value)
|
| 14 |
+
rgb_section_length = hex_total_length // 3
|
| 15 |
+
return tuple(
|
| 16 |
+
int(value[i : i + rgb_section_length], 16)
|
| 17 |
+
for i in range(0, hex_total_length, rgb_section_length)
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
viridis = [
|
| 22 |
+
[0, "#440154"],
|
| 23 |
+
[0.06274509803921569, "#48186a"],
|
| 24 |
+
[0.12549019607843137, "#472d7b"],
|
| 25 |
+
[0.18823529411764706, "#424086"],
|
| 26 |
+
[0.25098039215686274, "#3b528b"],
|
| 27 |
+
[0.3137254901960784, "#33638d"],
|
| 28 |
+
[0.3764705882352941, "#2c728e"],
|
| 29 |
+
[0.4392156862745098, "#26828e"],
|
| 30 |
+
[0.5019607843137255, "#21918c"],
|
| 31 |
+
[0.5647058823529412, "#1fa088"],
|
| 32 |
+
[0.6274509803921569, "#28ae80"],
|
| 33 |
+
[0.6901960784313725, "#3fbc73"],
|
| 34 |
+
[0.7529411764705882, "#5ec962"],
|
| 35 |
+
[0.8156862745098039, "#84d44b"],
|
| 36 |
+
[0.8784313725490196, "#addc30"],
|
| 37 |
+
[0.9411764705882353, "#d8e219"],
|
| 38 |
+
[1, "#fde725"],
|
| 39 |
+
]
|
| 40 |
+
# Define the power parameter for the transformation
|
| 41 |
+
power = 0.23 # You can adjust this value as needed
|
| 42 |
+
|
| 43 |
+
# Apply the power transformation to the values in the colorscale
|
| 44 |
+
for i in range(len(viridis)):
|
| 45 |
+
viridis[i][0] = np.power(viridis[i][0], power)
|
| 46 |
+
|
| 47 |
+
# Normalize the transformed values to [0, 1]
|
| 48 |
+
max_value = max(v[0] for v in viridis)
|
| 49 |
+
for i in range(len(viridis)):
|
| 50 |
+
viridis[i][0] /= max_value
|
| 51 |
+
|
| 52 |
+
# Sort the colorscale by the normalized values
|
| 53 |
+
viridis.sort(key=lambda x: x[0])
|
| 54 |
+
viridis_rgb = [[x[0], "rgb" + str(hex_to_rgb(x[1]))] for x in viridis]
|
| 55 |
+
|
| 56 |
+
# reverse the colorscale
|
| 57 |
+
viridis_rgb = [[x[0], y[1]] for x, y in zip(viridis_rgb, viridis_rgb[::-1])]
|