Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Ensure our working directory has the nanoVLM code
|
9 |
+
REPO_ID = "huggingface/nanoVLM"
|
10 |
+
LOCAL_MODEL_DIR = "models"
|
11 |
+
if not os.path.isdir(LOCAL_MODEL_DIR):
|
12 |
+
# clone just the models folder
|
13 |
+
from git import Repo
|
14 |
+
Repo.clone_from("https://github.com/huggingface/nanoVLM.git", ".", depth=1, no_single_branch=True, multi_options=["--filter=blob:none","--sparse"])
|
15 |
+
# enable sparse checkout of models/
|
16 |
+
Repo().git.sparse_checkout("set", "models")
|
17 |
+
|
18 |
+
# Add to path so we can import
|
19 |
+
sys.path.insert(0, os.path.abspath(LOCAL_MODEL_DIR))
|
20 |
+
|
21 |
+
from vision_language_model import VisionLanguageModel
|
22 |
+
|
23 |
+
# Load the VLM
|
24 |
+
model = VisionLanguageModel.from_pretrained("lusxvr/nanoVLM-222M")
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
def predict(img: Image.Image, prompt: str = "") -> str:
|
28 |
+
# Preprocess image, add batch dimension
|
29 |
+
img_tensor = model.preprocess_image(img).unsqueeze(0) # (1, 3, H, W)
|
30 |
+
with torch.no_grad():
|
31 |
+
# generate_text handles your prompt internally
|
32 |
+
output = model.generate_text(img_tensor, prompt=prompt)
|
33 |
+
return output
|
34 |
+
|
35 |
+
demo = gr.Interface(
|
36 |
+
fn=predict,
|
37 |
+
inputs=[
|
38 |
+
gr.Image(type="pil", label="Upload Image"),
|
39 |
+
gr.Textbox(lines=1, placeholder="Prompt (e.g. 'What is in this picture?')", label="Prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
],
|
41 |
+
outputs=gr.Textbox(label="Model Output"),
|
42 |
+
title="nanoVLM-222M Vision-Language Demo",
|
43 |
+
description="A minimal Gradio app for image captioning and VQA with nanoVLM-222M."
|
44 |
)
|
45 |
|
|
|
46 |
if __name__ == "__main__":
|
47 |
demo.launch()
|