witcher23 commited on
Commit
d5d0989
·
verified ·
1 Parent(s): de61aa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -58
app.py CHANGED
@@ -1,64 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from huggingface_hub import hf_hub_download
5
+ import sys
6
+ import os
7
+
8
+ # Ensure our working directory has the nanoVLM code
9
+ REPO_ID = "huggingface/nanoVLM"
10
+ LOCAL_MODEL_DIR = "models"
11
+ if not os.path.isdir(LOCAL_MODEL_DIR):
12
+ # clone just the models folder
13
+ from git import Repo
14
+ Repo.clone_from("https://github.com/huggingface/nanoVLM.git", ".", depth=1, no_single_branch=True, multi_options=["--filter=blob:none","--sparse"])
15
+ # enable sparse checkout of models/
16
+ Repo().git.sparse_checkout("set", "models")
17
+
18
+ # Add to path so we can import
19
+ sys.path.insert(0, os.path.abspath(LOCAL_MODEL_DIR))
20
+
21
+ from vision_language_model import VisionLanguageModel
22
+
23
+ # Load the VLM
24
+ model = VisionLanguageModel.from_pretrained("lusxvr/nanoVLM-222M")
25
+ model.eval()
26
+
27
+ def predict(img: Image.Image, prompt: str = "") -> str:
28
+ # Preprocess image, add batch dimension
29
+ img_tensor = model.preprocess_image(img).unsqueeze(0) # (1, 3, H, W)
30
+ with torch.no_grad():
31
+ # generate_text handles your prompt internally
32
+ output = model.generate_text(img_tensor, prompt=prompt)
33
+ return output
34
+
35
+ demo = gr.Interface(
36
+ fn=predict,
37
+ inputs=[
38
+ gr.Image(type="pil", label="Upload Image"),
39
+ gr.Textbox(lines=1, placeholder="Prompt (e.g. 'What is in this picture?')", label="Prompt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ],
41
+ outputs=gr.Textbox(label="Model Output"),
42
+ title="nanoVLM-222M Vision-Language Demo",
43
+ description="A minimal Gradio app for image captioning and VQA with nanoVLM-222M."
44
  )
45
 
 
46
  if __name__ == "__main__":
47
  demo.launch()