Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Upload 8 files
Browse files- Dockerfile +1 -0
- demo_text.txt +1 -1
- flair_recognizer.py +189 -0
- flair_test.py +27 -0
- openai_fake_data_generator.py +9 -13
- presidio_streamlit.py +99 -15
- requirements.txt +3 -1
    	
        Dockerfile
    CHANGED
    
    | @@ -13,6 +13,7 @@ COPY ./requirements.txt /code/requirements.txt | |
| 13 | 
             
            RUN pip3 install -r requirements.txt
         | 
| 14 | 
             
            RUN pip3 install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
         | 
| 15 | 
             
            RUN pip3 install https://huggingface.co/spacy/en_core_web_lg/resolve/main/en_core_web_lg-any-py3-none-any.whl
         | 
|  | |
| 16 | 
             
            EXPOSE 7860
         | 
| 17 |  | 
| 18 | 
             
            COPY . /code
         | 
|  | |
| 13 | 
             
            RUN pip3 install -r requirements.txt
         | 
| 14 | 
             
            RUN pip3 install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
         | 
| 15 | 
             
            RUN pip3 install https://huggingface.co/spacy/en_core_web_lg/resolve/main/en_core_web_lg-any-py3-none-any.whl
         | 
| 16 | 
            +
             | 
| 17 | 
             
            EXPOSE 7860
         | 
| 18 |  | 
| 19 | 
             
            COPY . /code
         | 
    	
        demo_text.txt
    CHANGED
    
    | @@ -1,4 +1,4 @@ | |
| 1 | 
            -
            Here are a few  | 
| 2 |  | 
| 3 | 
             
            Hello, my name is David Johnson and I live in Maine.
         | 
| 4 | 
             
            My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
         | 
|  | |
| 1 | 
            +
            Here are a few example sentences we currently support:
         | 
| 2 |  | 
| 3 | 
             
            Hello, my name is David Johnson and I live in Maine.
         | 
| 4 | 
             
            My credit card number is 4095-2609-9393-4932 and my crypto wallet id is 16Yeky6GMjeNkAiNcBY7ZhrLoMSgg1BoyZ.
         | 
    	
        flair_recognizer.py
    ADDED
    
    | @@ -0,0 +1,189 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import logging
         | 
| 2 | 
            +
            from typing import Optional, List, Tuple, Set
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from presidio_analyzer import (
         | 
| 5 | 
            +
                RecognizerResult,
         | 
| 6 | 
            +
                EntityRecognizer,
         | 
| 7 | 
            +
                AnalysisExplanation,
         | 
| 8 | 
            +
            )
         | 
| 9 | 
            +
            from presidio_analyzer.nlp_engine import NlpArtifacts
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from flair.data import Sentence
         | 
| 12 | 
            +
            from flair.models import SequenceTagger
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            logger = logging.getLogger("presidio-analyzer")
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            class FlairRecognizer(EntityRecognizer):
         | 
| 19 | 
            +
                """
         | 
| 20 | 
            +
                Wrapper for a flair model, if needed to be used within Presidio Analyzer.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                :example:
         | 
| 23 | 
            +
                >from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                >flair_recognizer = FlairRecognizer()
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                >registry = RecognizerRegistry()
         | 
| 28 | 
            +
                >registry.add_recognizer(flair_recognizer)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                >analyzer = AnalyzerEngine(registry=registry)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                >results = analyzer.analyze(
         | 
| 33 | 
            +
                >    "My name is Christopher and I live in Irbid.",
         | 
| 34 | 
            +
                >    language="en",
         | 
| 35 | 
            +
                >    return_decision_process=True,
         | 
| 36 | 
            +
                >)
         | 
| 37 | 
            +
                >for result in results:
         | 
| 38 | 
            +
                >    print(result)
         | 
| 39 | 
            +
                >    print(result.analysis_explanation)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                ENTITIES = [
         | 
| 45 | 
            +
                    "LOCATION",
         | 
| 46 | 
            +
                    "PERSON",
         | 
| 47 | 
            +
                    "ORGANIZATION",
         | 
| 48 | 
            +
                    # "MISCELLANEOUS"   # - There are no direct correlation with Presidio entities.
         | 
| 49 | 
            +
                ]
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                CHECK_LABEL_GROUPS = [
         | 
| 54 | 
            +
                    ({"LOCATION"}, {"LOC", "LOCATION"}),
         | 
| 55 | 
            +
                    ({"PERSON"}, {"PER", "PERSON"}),
         | 
| 56 | 
            +
                    ({"ORGANIZATION"}, {"ORG"}),
         | 
| 57 | 
            +
                    # ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
         | 
| 58 | 
            +
                ]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                MODEL_LANGUAGES = {
         | 
| 61 | 
            +
                    "en": "flair/ner-english-large"
         | 
| 62 | 
            +
                }
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                PRESIDIO_EQUIVALENCES = {
         | 
| 65 | 
            +
                    "PER": "PERSON",
         | 
| 66 | 
            +
                    "LOC": "LOCATION",
         | 
| 67 | 
            +
                    "ORG": "ORGANIZATION",
         | 
| 68 | 
            +
                    # 'MISC': 'MISCELLANEOUS'   # - Probably not PII
         | 
| 69 | 
            +
                }
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                def __init__(
         | 
| 72 | 
            +
                    self,
         | 
| 73 | 
            +
                    supported_language: str = "en",
         | 
| 74 | 
            +
                    supported_entities: Optional[List[str]] = None,
         | 
| 75 | 
            +
                    check_label_groups: Optional[Tuple[Set, Set]] = None,
         | 
| 76 | 
            +
                    model: SequenceTagger = None,
         | 
| 77 | 
            +
                ):
         | 
| 78 | 
            +
                    self.check_label_groups = (
         | 
| 79 | 
            +
                        check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    supported_entities = supported_entities if supported_entities else self.ENTITIES
         | 
| 83 | 
            +
                    self.model = (
         | 
| 84 | 
            +
                        model
         | 
| 85 | 
            +
                        if model
         | 
| 86 | 
            +
                        else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
         | 
| 87 | 
            +
                    )
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    super().__init__(
         | 
| 90 | 
            +
                        supported_entities=supported_entities,
         | 
| 91 | 
            +
                        supported_language=supported_language,
         | 
| 92 | 
            +
                        name="Flair Analytics",
         | 
| 93 | 
            +
                    )
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def load(self) -> None:
         | 
| 96 | 
            +
                    """Load the model, not used. Model is loaded during initialization."""
         | 
| 97 | 
            +
                    pass
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                def get_supported_entities(self) -> List[str]:
         | 
| 100 | 
            +
                    """
         | 
| 101 | 
            +
                    Return supported entities by this model.
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    :return: List of the supported entities.
         | 
| 104 | 
            +
                    """
         | 
| 105 | 
            +
                    return self.supported_entities
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                # Class to use Flair with Presidio as an external recognizer.
         | 
| 108 | 
            +
                def analyze(
         | 
| 109 | 
            +
                    self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
         | 
| 110 | 
            +
                ) -> List[RecognizerResult]:
         | 
| 111 | 
            +
                    """
         | 
| 112 | 
            +
                    Analyze text using Text Analytics.
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    :param text: The text for analysis.
         | 
| 115 | 
            +
                    :param entities: Not working properly for this recognizer.
         | 
| 116 | 
            +
                    :param nlp_artifacts: Not used by this recognizer.
         | 
| 117 | 
            +
                    :param language: Text language. Supported languages in MODEL_LANGUAGES
         | 
| 118 | 
            +
                    :return: The list of Presidio RecognizerResult constructed from the recognized
         | 
| 119 | 
            +
                        Flair detections.
         | 
| 120 | 
            +
                    """
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    results = []
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    sentences = Sentence(text)
         | 
| 125 | 
            +
                    self.model.predict(sentences)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    # If there are no specific list of entities, we will look for all of it.
         | 
| 128 | 
            +
                    if not entities:
         | 
| 129 | 
            +
                        entities = self.supported_entities
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    for entity in entities:
         | 
| 132 | 
            +
                        if entity not in self.supported_entities:
         | 
| 133 | 
            +
                            continue
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                        for ent in sentences.get_spans("ner"):
         | 
| 136 | 
            +
                            if not self.__check_label(
         | 
| 137 | 
            +
                                entity, ent.labels[0].value, self.check_label_groups
         | 
| 138 | 
            +
                            ):
         | 
| 139 | 
            +
                                continue
         | 
| 140 | 
            +
                            textual_explanation = self.DEFAULT_EXPLANATION.format(
         | 
| 141 | 
            +
                                ent.labels[0].value
         | 
| 142 | 
            +
                            )
         | 
| 143 | 
            +
                            explanation = self.build_flair_explanation(
         | 
| 144 | 
            +
                                round(ent.score, 2), textual_explanation
         | 
| 145 | 
            +
                            )
         | 
| 146 | 
            +
                            flair_result = self._convert_to_recognizer_result(ent, explanation)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                            results.append(flair_result)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    return results
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
         | 
| 153 | 
            +
                    entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
         | 
| 154 | 
            +
                    flair_score = round(entity.score, 2)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    flair_results = RecognizerResult(
         | 
| 157 | 
            +
                        entity_type=entity_type,
         | 
| 158 | 
            +
                        start=entity.start_position,
         | 
| 159 | 
            +
                        end=entity.end_position,
         | 
| 160 | 
            +
                        score=flair_score,
         | 
| 161 | 
            +
                        analysis_explanation=explanation,
         | 
| 162 | 
            +
                    )
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    return flair_results
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def build_flair_explanation(
         | 
| 167 | 
            +
                    self, original_score: float, explanation: str
         | 
| 168 | 
            +
                ) -> AnalysisExplanation:
         | 
| 169 | 
            +
                    """
         | 
| 170 | 
            +
                    Create explanation for why this result was detected.
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    :param original_score: Score given by this recognizer
         | 
| 173 | 
            +
                    :param explanation: Explanation string
         | 
| 174 | 
            +
                    :return:
         | 
| 175 | 
            +
                    """
         | 
| 176 | 
            +
                    explanation = AnalysisExplanation(
         | 
| 177 | 
            +
                        recognizer=self.__class__.__name__,
         | 
| 178 | 
            +
                        original_score=original_score,
         | 
| 179 | 
            +
                        textual_explanation=explanation,
         | 
| 180 | 
            +
                    )
         | 
| 181 | 
            +
                    return explanation
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                @staticmethod
         | 
| 184 | 
            +
                def __check_label(
         | 
| 185 | 
            +
                    entity: str, label: str, check_label_groups: Tuple[Set, Set]
         | 
| 186 | 
            +
                ) -> bool:
         | 
| 187 | 
            +
                    return any(
         | 
| 188 | 
            +
                        [entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
         | 
| 189 | 
            +
                    )
         | 
    	
        flair_test.py
    ADDED
    
    | @@ -0,0 +1,27 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Import generic wrappers
         | 
| 2 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            if __name__ == "__main__":
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                from flair.data import Sentence
         | 
| 8 | 
            +
                from flair.models import SequenceTagger
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                # load tagger
         | 
| 11 | 
            +
                tagger = SequenceTagger.load("flair/ner-english-large")
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                # make example sentence
         | 
| 14 | 
            +
                sentence = Sentence("George Washington went to Washington")
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                # predict NER tags
         | 
| 17 | 
            +
                tagger.predict(sentence)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                # print sentence
         | 
| 20 | 
            +
                print(sentence)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                # print predicted NER spans
         | 
| 23 | 
            +
                print('The following NER tags are found:')
         | 
| 24 | 
            +
                # iterate over entities and print
         | 
| 25 | 
            +
                for entity in sentence.get_spans('ner'):
         | 
| 26 | 
            +
                    print(entity)
         | 
| 27 | 
            +
             | 
    	
        openai_fake_data_generator.py
    CHANGED
    
    | @@ -1,37 +1,33 @@ | |
| 1 | 
             
            import openai
         | 
| 2 | 
            -
            frmo typing import List
         | 
| 3 | 
            -
            from presidio_analyzer import RecognizerResult
         | 
| 4 | 
            -
            from presidio_anonymizer import AnonymizerEngine
         | 
| 5 |  | 
| 6 | 
            -
             | 
| 7 | 
            -
            def set_openai_key(openai_key:string):
         | 
| 8 | 
             
                """Set the OpenAI API key.
         | 
| 9 | 
             
                :param openai_key: the open AI key (https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key)
         | 
| 10 | 
             
                """
         | 
| 11 | 
             
                openai.api_key = openai_key
         | 
| 12 |  | 
| 13 |  | 
| 14 | 
            -
            def call_completion_model( | 
|  | |
|  | |
| 15 | 
             
                """Creates a request for the OpenAI Completion service and returns the response.
         | 
| 16 | 
            -
             | 
| 17 | 
             
                :param prompt: The prompt for the completion model
         | 
| 18 | 
             
                :param model: OpenAI model name
         | 
| 19 | 
            -
                :param  | 
| 20 | 
             
                """
         | 
| 21 |  | 
| 22 | 
             
                response = openai.Completion.create(
         | 
| 23 | 
            -
                    model=model,
         | 
| 24 | 
            -
                    prompt= prompt,
         | 
| 25 | 
            -
                    max_tokens=max_tokens
         | 
| 26 | 
             
                )
         | 
| 27 |  | 
| 28 | 
            -
                return response[ | 
| 29 |  | 
| 30 |  | 
| 31 | 
             
            def create_prompt(anonymized_text: str) -> str:
         | 
| 32 | 
             
                """
         | 
| 33 | 
             
                Create the prompt with instructions to GPT-3.
         | 
| 34 | 
            -
             | 
| 35 | 
             
                :param anonymized_text: Text with placeholders instead of PII values, e.g. My name is <PERSON>.
         | 
| 36 | 
             
                """
         | 
| 37 |  | 
|  | |
| 1 | 
             
            import openai
         | 
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
            +
            def set_openai_key(openai_key: str):
         | 
|  | |
| 4 | 
             
                """Set the OpenAI API key.
         | 
| 5 | 
             
                :param openai_key: the open AI key (https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key)
         | 
| 6 | 
             
                """
         | 
| 7 | 
             
                openai.api_key = openai_key
         | 
| 8 |  | 
| 9 |  | 
| 10 | 
            +
            def call_completion_model(
         | 
| 11 | 
            +
                prompt: str, model: str = "text-davinci-003", max_tokens: int = 512
         | 
| 12 | 
            +
            ) -> str:
         | 
| 13 | 
             
                """Creates a request for the OpenAI Completion service and returns the response.
         | 
| 14 | 
            +
             | 
| 15 | 
             
                :param prompt: The prompt for the completion model
         | 
| 16 | 
             
                :param model: OpenAI model name
         | 
| 17 | 
            +
                :param max_tokens: Model's max_tokens parameter
         | 
| 18 | 
             
                """
         | 
| 19 |  | 
| 20 | 
             
                response = openai.Completion.create(
         | 
| 21 | 
            +
                    model=model, prompt=prompt, max_tokens=max_tokens
         | 
|  | |
|  | |
| 22 | 
             
                )
         | 
| 23 |  | 
| 24 | 
            +
                return response["choices"][0].text
         | 
| 25 |  | 
| 26 |  | 
| 27 | 
             
            def create_prompt(anonymized_text: str) -> str:
         | 
| 28 | 
             
                """
         | 
| 29 | 
             
                Create the prompt with instructions to GPT-3.
         | 
| 30 | 
            +
             | 
| 31 | 
             
                :param anonymized_text: Text with placeholders instead of PII values, e.g. My name is <PERSON>.
         | 
| 32 | 
             
                """
         | 
| 33 |  | 
    	
        presidio_streamlit.py
    CHANGED
    
    | @@ -1,5 +1,5 @@ | |
| 1 | 
             
            """Streamlit app for Presidio."""
         | 
| 2 | 
            -
             | 
| 3 | 
             
            from json import JSONEncoder
         | 
| 4 | 
             
            from typing import List
         | 
| 5 |  | 
| @@ -12,13 +12,18 @@ from presidio_analyzer.nlp_engine import NlpEngineProvider | |
| 12 | 
             
            from presidio_anonymizer import AnonymizerEngine
         | 
| 13 | 
             
            from presidio_anonymizer.entities import OperatorConfig
         | 
| 14 |  | 
|  | |
| 15 | 
             
            from transformers_rec import (
         | 
| 16 | 
             
                STANFORD_COFIGURATION,
         | 
| 17 | 
             
                TransformersRecognizer,
         | 
| 18 | 
             
                BERT_DEID_CONFIGURATION,
         | 
| 19 | 
             
            )
         | 
| 20 |  | 
| 21 | 
            -
            from openai_fake_data_generator import  | 
|  | |
|  | |
|  | |
|  | |
| 22 |  | 
| 23 |  | 
| 24 | 
             
            # Helper methods
         | 
| @@ -37,15 +42,26 @@ def analyzer_engine(model_path: str): | |
| 37 |  | 
| 38 | 
             
                # Set up NLP Engine according to the model of choice
         | 
| 39 | 
             
                if model_path == "en_core_web_lg":
         | 
| 40 | 
            -
             | 
|  | |
| 41 | 
             
                    nlp_configuration = {
         | 
| 42 | 
             
                        "nlp_engine_name": "spacy",
         | 
| 43 | 
             
                        "models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
         | 
| 44 | 
             
                    }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 45 | 
             
                else:
         | 
|  | |
|  | |
| 46 | 
             
                    # Using a small spaCy model + a HF NER model
         | 
| 47 | 
             
                    transformers_recognizer = TransformersRecognizer(model_path=model_path)
         | 
| 48 | 
            -
             | 
| 49 | 
             
                    if model_path == "StanfordAIMI/stanford-deidentifier-base":
         | 
| 50 | 
             
                        transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
         | 
| 51 | 
             
                    elif model_path == "obi/deid_roberta_i2b2":
         | 
| @@ -101,6 +117,7 @@ def anonymize(text: str, analyze_results: List[RecognizerResult]): | |
| 101 | 
             
                        "from_end": False,
         | 
| 102 | 
             
                    }
         | 
| 103 |  | 
|  | |
| 104 | 
             
                elif st_operator == "encrypt":
         | 
| 105 | 
             
                    operator_config = {"key": st_encrypt_key}
         | 
| 106 | 
             
                elif st_operator == "highlight":
         | 
| @@ -108,8 +125,11 @@ def anonymize(text: str, analyze_results: List[RecognizerResult]): | |
| 108 | 
             
                else:
         | 
| 109 | 
             
                    operator_config = None
         | 
| 110 |  | 
|  | |
| 111 | 
             
                if st_operator == "highlight":
         | 
| 112 | 
             
                    operator = "custom"
         | 
|  | |
|  | |
| 113 | 
             
                else:
         | 
| 114 | 
             
                    operator = st_operator
         | 
| 115 |  | 
| @@ -139,17 +159,39 @@ def annotate(text: str, analyze_results: List[RecognizerResult]): | |
| 139 | 
             
                        tokens.append(text[: res.start])
         | 
| 140 |  | 
| 141 | 
             
                    # append entity text and entity type
         | 
| 142 | 
            -
                    tokens.append((text[res.start: res.end], res.entity_type))
         | 
| 143 |  | 
| 144 | 
             
                    # if another entity coming i.e. we're not at the last results element, add text up to next entity
         | 
| 145 | 
             
                    if i != len(results) - 1:
         | 
| 146 | 
            -
                        tokens.append(text[res.end: results[i + 1].start])
         | 
| 147 | 
             
                    # if no more entities coming, add all remaining text
         | 
| 148 | 
             
                    else:
         | 
| 149 | 
            -
                        tokens.append(text[res.end:])
         | 
| 150 | 
             
                return tokens
         | 
| 151 |  | 
| 152 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 153 | 
             
            st.set_page_config(page_title="Presidio demo", layout="wide")
         | 
| 154 |  | 
| 155 | 
             
            # Sidebar
         | 
| @@ -175,20 +217,35 @@ st.sidebar.markdown( | |
| 175 | 
             
            )
         | 
| 176 |  | 
| 177 | 
             
            st_model = st.sidebar.selectbox(
         | 
| 178 | 
            -
                "NER model",
         | 
| 179 | 
             
                [
         | 
| 180 | 
             
                    "StanfordAIMI/stanford-deidentifier-base",
         | 
| 181 | 
             
                    "obi/deid_roberta_i2b2",
         | 
|  | |
| 182 | 
             
                    "en_core_web_lg",
         | 
| 183 | 
             
                ],
         | 
| 184 | 
             
                index=1,
         | 
|  | |
|  | |
|  | |
|  | |
| 185 | 
             
            )
         | 
| 186 | 
             
            st.sidebar.markdown("> Note: Models might take some time to download. ")
         | 
| 187 |  | 
| 188 | 
             
            st_operator = st.sidebar.selectbox(
         | 
| 189 | 
             
                "De-identification approach",
         | 
| 190 | 
            -
                ["redact", "replace", " | 
| 191 | 
             
                index=1,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 192 | 
             
            )
         | 
| 193 |  | 
| 194 | 
             
            if st_operator == "mask":
         | 
| @@ -198,19 +255,36 @@ if st_operator == "mask": | |
| 198 | 
             
                st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
         | 
| 199 | 
             
            elif st_operator == "encrypt":
         | 
| 200 | 
             
                st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
         | 
| 201 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 202 | 
             
            st_threshold = st.sidebar.slider(
         | 
| 203 | 
            -
                label="Acceptance threshold", | 
|  | |
|  | |
|  | |
|  | |
| 204 | 
             
            )
         | 
| 205 |  | 
| 206 | 
             
            st_return_decision_process = st.sidebar.checkbox(
         | 
| 207 | 
            -
                "Add analysis explanations to findings", value=False
         | 
|  | |
| 208 | 
             
            )
         | 
| 209 |  | 
| 210 | 
             
            st_entities = st.sidebar.multiselect(
         | 
| 211 | 
             
                label="Which entities to look for?",
         | 
| 212 | 
             
                options=get_supported_entities(),
         | 
| 213 | 
             
                default=list(get_supported_entities()),
         | 
|  | |
| 214 | 
             
            )
         | 
| 215 |  | 
| 216 | 
             
            # Main panel
         | 
| @@ -242,11 +316,21 @@ st_analyze_results = analyze( | |
| 242 | 
             
            )
         | 
| 243 |  | 
| 244 | 
             
            # After
         | 
| 245 | 
            -
            if st_operator  | 
| 246 | 
             
                with col2:
         | 
| 247 | 
             
                    st.subheader(f"Output")
         | 
| 248 | 
             
                    st_anonymize_results = anonymize(st_text, st_analyze_results)
         | 
| 249 | 
             
                    st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 250 | 
             
            else:
         | 
| 251 | 
             
                st.subheader("Highlighted")
         | 
| 252 | 
             
                annotated_tokens = annotate(st_text, st_analyze_results)
         | 
| @@ -269,7 +353,7 @@ st.subheader( | |
| 269 | 
             
            )
         | 
| 270 | 
             
            if st_analyze_results:
         | 
| 271 | 
             
                df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
         | 
| 272 | 
            -
                df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
         | 
| 273 |  | 
| 274 | 
             
                df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
         | 
| 275 | 
             
                    {
         | 
| @@ -281,7 +365,7 @@ if st_analyze_results: | |
| 281 | 
             
                    },
         | 
| 282 | 
             
                    axis=1,
         | 
| 283 | 
             
                )
         | 
| 284 | 
            -
                df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
         | 
| 285 | 
             
                if st_return_decision_process:
         | 
| 286 | 
             
                    analysis_explanation_df = pd.DataFrame.from_records(
         | 
| 287 | 
             
                        [r.analysis_explanation.to_dict() for r in st_analyze_results]
         | 
|  | |
| 1 | 
             
            """Streamlit app for Presidio."""
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
             
            from json import JSONEncoder
         | 
| 4 | 
             
            from typing import List
         | 
| 5 |  | 
|  | |
| 12 | 
             
            from presidio_anonymizer import AnonymizerEngine
         | 
| 13 | 
             
            from presidio_anonymizer.entities import OperatorConfig
         | 
| 14 |  | 
| 15 | 
            +
            from flair_recognizer import FlairRecognizer
         | 
| 16 | 
             
            from transformers_rec import (
         | 
| 17 | 
             
                STANFORD_COFIGURATION,
         | 
| 18 | 
             
                TransformersRecognizer,
         | 
| 19 | 
             
                BERT_DEID_CONFIGURATION,
         | 
| 20 | 
             
            )
         | 
| 21 |  | 
| 22 | 
            +
            from openai_fake_data_generator import (
         | 
| 23 | 
            +
                set_openai_key,
         | 
| 24 | 
            +
                call_completion_model,
         | 
| 25 | 
            +
                create_prompt,
         | 
| 26 | 
            +
            )
         | 
| 27 |  | 
| 28 |  | 
| 29 | 
             
            # Helper methods
         | 
|  | |
| 42 |  | 
| 43 | 
             
                # Set up NLP Engine according to the model of choice
         | 
| 44 | 
             
                if model_path == "en_core_web_lg":
         | 
| 45 | 
            +
                    if not spacy.util.is_package("en_core_web_lg"):
         | 
| 46 | 
            +
                        spacy.cli.download("en_core_web_lg")
         | 
| 47 | 
             
                    nlp_configuration = {
         | 
| 48 | 
             
                        "nlp_engine_name": "spacy",
         | 
| 49 | 
             
                        "models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
         | 
| 50 | 
             
                    }
         | 
| 51 | 
            +
                elif model_path == "flair/ner-english-large":
         | 
| 52 | 
            +
                    flair_recognizer = FlairRecognizer()
         | 
| 53 | 
            +
                    nlp_configuration = {
         | 
| 54 | 
            +
                        "nlp_engine_name": "spacy",
         | 
| 55 | 
            +
                        "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
         | 
| 56 | 
            +
                    }
         | 
| 57 | 
            +
                    registry.add_recognizer(flair_recognizer)
         | 
| 58 | 
            +
                    registry.remove_recognizer("SpacyRecognizer")
         | 
| 59 | 
             
                else:
         | 
| 60 | 
            +
                    if not spacy.util.is_package("en_core_web_sm"):
         | 
| 61 | 
            +
                        spacy.cli.download("en_core_web_sm")
         | 
| 62 | 
             
                    # Using a small spaCy model + a HF NER model
         | 
| 63 | 
             
                    transformers_recognizer = TransformersRecognizer(model_path=model_path)
         | 
| 64 | 
            +
                    registry.remove_recognizer("SpacyRecognizer")
         | 
| 65 | 
             
                    if model_path == "StanfordAIMI/stanford-deidentifier-base":
         | 
| 66 | 
             
                        transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
         | 
| 67 | 
             
                    elif model_path == "obi/deid_roberta_i2b2":
         | 
|  | |
| 117 | 
             
                        "from_end": False,
         | 
| 118 | 
             
                    }
         | 
| 119 |  | 
| 120 | 
            +
                # Define operator config
         | 
| 121 | 
             
                elif st_operator == "encrypt":
         | 
| 122 | 
             
                    operator_config = {"key": st_encrypt_key}
         | 
| 123 | 
             
                elif st_operator == "highlight":
         | 
|  | |
| 125 | 
             
                else:
         | 
| 126 | 
             
                    operator_config = None
         | 
| 127 |  | 
| 128 | 
            +
                # Change operator if needed as intermediate step
         | 
| 129 | 
             
                if st_operator == "highlight":
         | 
| 130 | 
             
                    operator = "custom"
         | 
| 131 | 
            +
                elif st_operator == "synthesize":
         | 
| 132 | 
            +
                    operator = "replace"
         | 
| 133 | 
             
                else:
         | 
| 134 | 
             
                    operator = st_operator
         | 
| 135 |  | 
|  | |
| 159 | 
             
                        tokens.append(text[: res.start])
         | 
| 160 |  | 
| 161 | 
             
                    # append entity text and entity type
         | 
| 162 | 
            +
                    tokens.append((text[res.start : res.end], res.entity_type))
         | 
| 163 |  | 
| 164 | 
             
                    # if another entity coming i.e. we're not at the last results element, add text up to next entity
         | 
| 165 | 
             
                    if i != len(results) - 1:
         | 
| 166 | 
            +
                        tokens.append(text[res.end : results[i + 1].start])
         | 
| 167 | 
             
                    # if no more entities coming, add all remaining text
         | 
| 168 | 
             
                    else:
         | 
| 169 | 
            +
                        tokens.append(text[res.end :])
         | 
| 170 | 
             
                return tokens
         | 
| 171 |  | 
| 172 |  | 
| 173 | 
            +
            def create_fake_data(
         | 
| 174 | 
            +
                text: str,
         | 
| 175 | 
            +
                analyze_results: List[RecognizerResult],
         | 
| 176 | 
            +
                openai_key: str,
         | 
| 177 | 
            +
                openai_model_name: str,
         | 
| 178 | 
            +
            ):
         | 
| 179 | 
            +
                """Creates a synthetic version of the text using OpenAI APIs"""
         | 
| 180 | 
            +
                if not openai_key:
         | 
| 181 | 
            +
                    return "Please provide your OpenAI key"
         | 
| 182 | 
            +
                results = anonymize(text, analyze_results)
         | 
| 183 | 
            +
                set_openai_key(openai_key)
         | 
| 184 | 
            +
                prompt = create_prompt(results.text)
         | 
| 185 | 
            +
                fake = call_openai_api(prompt, openai_model_name)
         | 
| 186 | 
            +
                return fake
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            @st.cache_data
         | 
| 190 | 
            +
            def call_openai_api(prompt: str, openai_model_name: str) -> str:
         | 
| 191 | 
            +
                fake_data = call_completion_model(prompt, model=openai_model_name)
         | 
| 192 | 
            +
                return fake_data
         | 
| 193 | 
            +
             | 
| 194 | 
            +
             | 
| 195 | 
             
            st.set_page_config(page_title="Presidio demo", layout="wide")
         | 
| 196 |  | 
| 197 | 
             
            # Sidebar
         | 
|  | |
| 217 | 
             
            )
         | 
| 218 |  | 
| 219 | 
             
            st_model = st.sidebar.selectbox(
         | 
| 220 | 
            +
                "NER model for PII detection",
         | 
| 221 | 
             
                [
         | 
| 222 | 
             
                    "StanfordAIMI/stanford-deidentifier-base",
         | 
| 223 | 
             
                    "obi/deid_roberta_i2b2",
         | 
| 224 | 
            +
                    "flair/ner-english-large",
         | 
| 225 | 
             
                    "en_core_web_lg",
         | 
| 226 | 
             
                ],
         | 
| 227 | 
             
                index=1,
         | 
| 228 | 
            +
                help="""
         | 
| 229 | 
            +
                Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
         | 
| 230 | 
            +
                Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair.
         | 
| 231 | 
            +
                """,
         | 
| 232 | 
             
            )
         | 
| 233 | 
             
            st.sidebar.markdown("> Note: Models might take some time to download. ")
         | 
| 234 |  | 
| 235 | 
             
            st_operator = st.sidebar.selectbox(
         | 
| 236 | 
             
                "De-identification approach",
         | 
| 237 | 
            +
                ["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
         | 
| 238 | 
             
                index=1,
         | 
| 239 | 
            +
                help="""
         | 
| 240 | 
            +
                Select which manipulation to the text is requested after PII has been identified.\n
         | 
| 241 | 
            +
                - Redact: Completely remove the PII text\n
         | 
| 242 | 
            +
                - Replace: Replace the PII text with a constant, e.g. <PERSON>\n
         | 
| 243 | 
            +
                - Synthesize: Replace with fake values (requires an OpenAI key)\n
         | 
| 244 | 
            +
                - Highlight: Shows the original text with PII highlighted in colors\n
         | 
| 245 | 
            +
                - Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
         | 
| 246 | 
            +
                - Hash: Replaces with the hash of the PII string\n
         | 
| 247 | 
            +
                - Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
         | 
| 248 | 
            +
                     """,
         | 
| 249 | 
             
            )
         | 
| 250 |  | 
| 251 | 
             
            if st_operator == "mask":
         | 
|  | |
| 255 | 
             
                st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
         | 
| 256 | 
             
            elif st_operator == "encrypt":
         | 
| 257 | 
             
                st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")
         | 
| 258 | 
            +
            elif st_operator == "synthesize":
         | 
| 259 | 
            +
                st_openai_key = st.sidebar.text_input(
         | 
| 260 | 
            +
                    "OPENAI_KEY",
         | 
| 261 | 
            +
                    value=os.getenv("OPENAI_KEY", default=""),
         | 
| 262 | 
            +
                    help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
         | 
| 263 | 
            +
                    type="password",
         | 
| 264 | 
            +
                )
         | 
| 265 | 
            +
                st_openai_model = st.sidebar.text_input(
         | 
| 266 | 
            +
                    "OpenAI model for text synthesis",
         | 
| 267 | 
            +
                    value="text-davinci-003",
         | 
| 268 | 
            +
                    help="See more here: https://platform.openai.com/docs/models/",
         | 
| 269 | 
            +
                )
         | 
| 270 | 
             
            st_threshold = st.sidebar.slider(
         | 
| 271 | 
            +
                label="Acceptance threshold",
         | 
| 272 | 
            +
                min_value=0.0,
         | 
| 273 | 
            +
                max_value=1.0,
         | 
| 274 | 
            +
                value=0.35,
         | 
| 275 | 
            +
                help="Define the threshold for accepting a detection as PII. See more here: ",
         | 
| 276 | 
             
            )
         | 
| 277 |  | 
| 278 | 
             
            st_return_decision_process = st.sidebar.checkbox(
         | 
| 279 | 
            +
                "Add analysis explanations to findings", value=False,
         | 
| 280 | 
            +
                help="Add the decision process to the output table. More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/"
         | 
| 281 | 
             
            )
         | 
| 282 |  | 
| 283 | 
             
            st_entities = st.sidebar.multiselect(
         | 
| 284 | 
             
                label="Which entities to look for?",
         | 
| 285 | 
             
                options=get_supported_entities(),
         | 
| 286 | 
             
                default=list(get_supported_entities()),
         | 
| 287 | 
            +
                help="Limit the list of PII entities detected. This list is dynamic and based on the NER model and registered recognizers. More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/"
         | 
| 288 | 
             
            )
         | 
| 289 |  | 
| 290 | 
             
            # Main panel
         | 
|  | |
| 316 | 
             
            )
         | 
| 317 |  | 
| 318 | 
             
            # After
         | 
| 319 | 
            +
            if st_operator not in ("highlight", "synthesize"):
         | 
| 320 | 
             
                with col2:
         | 
| 321 | 
             
                    st.subheader(f"Output")
         | 
| 322 | 
             
                    st_anonymize_results = anonymize(st_text, st_analyze_results)
         | 
| 323 | 
             
                    st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
         | 
| 324 | 
            +
            elif st_operator == "synthesize":
         | 
| 325 | 
            +
                with col2:
         | 
| 326 | 
            +
                    st.subheader(f"OpenAI Generated output")
         | 
| 327 | 
            +
                    fake_data = create_fake_data(
         | 
| 328 | 
            +
                        st_text,
         | 
| 329 | 
            +
                        st_analyze_results,
         | 
| 330 | 
            +
                        openai_key=st_openai_key,
         | 
| 331 | 
            +
                        openai_model_name=st_openai_model,
         | 
| 332 | 
            +
                    )
         | 
| 333 | 
            +
                    st.text_area(label="Synthetic data", value=fake_data, height=400)
         | 
| 334 | 
             
            else:
         | 
| 335 | 
             
                st.subheader("Highlighted")
         | 
| 336 | 
             
                annotated_tokens = annotate(st_text, st_analyze_results)
         | 
|  | |
| 353 | 
             
            )
         | 
| 354 | 
             
            if st_analyze_results:
         | 
| 355 | 
             
                df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
         | 
| 356 | 
            +
                df["text"] = [st_text[res.start : res.end] for res in st_analyze_results]
         | 
| 357 |  | 
| 358 | 
             
                df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
         | 
| 359 | 
             
                    {
         | 
|  | |
| 365 | 
             
                    },
         | 
| 366 | 
             
                    axis=1,
         | 
| 367 | 
             
                )
         | 
| 368 | 
            +
                df_subset["Text"] = [st_text[res.start : res.end] for res in st_analyze_results]
         | 
| 369 | 
             
                if st_return_decision_process:
         | 
| 370 | 
             
                    analysis_explanation_df = pd.DataFrame.from_records(
         | 
| 371 | 
             
                        [r.analysis_explanation.to_dict() for r in st_analyze_results]
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -4,4 +4,6 @@ streamlit | |
| 4 | 
             
            pandas
         | 
| 5 | 
             
            st-annotated-text
         | 
| 6 | 
             
            torch
         | 
| 7 | 
            -
            transformers
         | 
|  | |
|  | 
|  | |
| 4 | 
             
            pandas
         | 
| 5 | 
             
            st-annotated-text
         | 
| 6 | 
             
            torch
         | 
| 7 | 
            +
            transformers
         | 
| 8 | 
            +
            flair
         | 
| 9 | 
            +
            openai
         | 
