Spaces:
Running
Running
File size: 14,222 Bytes
3e2281b 66f48e7 0720714 3e2281b 0720714 3e2281b 5b927c3 0720714 3e2281b 0720714 3e2281b 0720714 5b927c3 0720714 1e7b25b 8d87e45 0720714 5b927c3 0720714 5b927c3 0720714 5b927c3 0720714 1e7b25b 5b927c3 1e7b25b 0720714 1e7b25b 5b927c3 1e7b25b 7c8919c 3e2281b e8fce12 7c8919c 3e2281b 0720714 3e2281b 0720714 3e2281b 5b927c3 3e2281b 0720714 5b927c3 3e2281b 5b927c3 3e2281b 0720714 5b927c3 3e2281b 0720714 3e2281b 0720714 5b927c3 3e2281b 0720714 3e2281b 5b927c3 3e2281b 0720714 5b927c3 66f48e7 5b927c3 66f48e7 3e2281b 0720714 3e2281b 0720714 3e2281b 0720714 3e2281b 0720714 3e2281b 66f48e7 0720714 3e2281b 6881737 3e2281b 5b927c3 3e2281b 6881737 3e2281b 0720714 3e2281b 6881737 3e2281b e8fce12 3e2281b 6881737 3e2281b 5b927c3 3e2281b 5b927c3 3e2281b 5b927c3 6881737 3e2281b 5b927c3 6881737 3e2281b 5b927c3 66f48e7 5b927c3 3e2281b 0720714 6881737 3e2281b 5b927c3 3e2281b 5b927c3 1e7b25b 5b927c3 1e7b25b 5b927c3 6881737 1e7b25b 5b927c3 6881737 1e7b25b 3e2281b 66f48e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import sys
if "APP_PATH" in os.environ:
app_path = os.path.abspath(os.environ["APP_PATH"])
if os.getcwd() != app_path:
# fix sys.path for import
os.chdir(app_path)
if app_path not in sys.path:
sys.path.append(app_path)
import io
import tempfile
from typing import List
import pypdfium2
import gradio as gr
from surya.common.surya.schema import TaskNames
from surya.models import load_predictors
from surya.debug.draw import draw_polys_on_image, draw_bboxes_on_image
from surya.debug.text import draw_text_on_image
from PIL import Image, ImageDraw
from surya.table_rec import TableResult
from surya.detection import TextDetectionResult
from surya.recognition import OCRResult
from surya.layout import LayoutResult
from surya.settings import settings
from surya.common.util import rescale_bbox, expand_bbox
# just copy from streamlit_app.py
def ocr_errors(pdf_file, page_count, sample_len=512, max_samples=10, max_pages=15):
from pdftext.extraction import plain_text_output
with tempfile.NamedTemporaryFile(suffix=".pdf") as f:
f.write(pdf_file.getvalue())
f.seek(0)
# Sample the text from the middle of the PDF
page_middle = page_count // 2
page_range = range(
max(page_middle - max_pages, 0), min(page_middle + max_pages, page_count)
)
text = plain_text_output(f.name, page_range=page_range)
sample_gap = len(text) // max_samples
if len(text) == 0 or sample_gap == 0:
return "This PDF has no text or very little text", ["no text"]
if sample_gap < sample_len:
sample_gap = sample_len
# Split the text into samples for the model
samples = []
for i in range(0, len(text), sample_gap):
samples.append(text[i : i + sample_len])
results = predictors["ocr_error"](samples)
label = "This PDF has good text."
if results.labels.count("bad") / len(results.labels) > 0.2:
label = "This PDF may have garbled or bad OCR text."
return label, results.labels
# just copy from streamlit_app.py
def text_detection(img) -> (Image.Image, TextDetectionResult):
text_pred = predictors["detection"]([img])[0]
text_polygons = [p.polygon for p in text_pred.bboxes]
det_img = draw_polys_on_image(text_polygons, img.copy())
return det_img, text_pred
# just copy from streamlit_app.py
def layout_detection(img) -> (Image.Image, LayoutResult):
pred = predictors["layout"]([img])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [
f"{p.label}-{p.position}-{round(p.top_k[p.label], 2)}" for p in pred.bboxes
]
layout_img = draw_polys_on_image(
polygons, img.copy(), labels=labels, label_font_size=18
)
return layout_img, pred
# just copy from streamlit_app.py
def table_recognition(
img, highres_img, skip_table_detection: bool
) -> (Image.Image, List[TableResult]):
if skip_table_detection:
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])]
table_imgs = [highres_img]
else:
_, layout_pred = layout_detection(img)
layout_tables_lowres = [
line.bbox
for line in layout_pred.bboxes
if line.label in ["Table", "TableOfContents"]
]
table_imgs = []
layout_tables = []
for tb in layout_tables_lowres:
highres_bbox = rescale_bbox(tb, img.size, highres_img.size)
# Slightly expand the box
highres_bbox = expand_bbox(highres_bbox)
table_imgs.append(highres_img.crop(highres_bbox))
layout_tables.append(highres_bbox)
table_preds = predictors["table_rec"](table_imgs)
table_img = img.copy()
for results, table_bbox in zip(table_preds, layout_tables):
adjusted_bboxes = []
labels = []
colors = []
for item in results.cells:
adjusted_bboxes.append(
[
(item.bbox[0] + table_bbox[0]),
(item.bbox[1] + table_bbox[1]),
(item.bbox[2] + table_bbox[0]),
(item.bbox[3] + table_bbox[1]),
]
)
labels.append(item.label)
if "Row" in item.label:
colors.append("blue")
else:
colors.append("red")
table_img = draw_bboxes_on_image(
adjusted_bboxes,
highres_img,
labels=labels,
label_font_size=18,
color=colors,
)
return table_img, table_preds
# just copy from streamlit_app.py
def ocr(
img: Image.Image,
highres_img: Image.Image,
skip_text_detection: bool = False,
recognize_math: bool = True,
with_bboxes: bool = True,
) -> (Image.Image, OCRResult):
if skip_text_detection:
img = highres_img
bboxes = [[[0, 0, img.width, img.height]]]
else:
bboxes = None
if with_bboxes:
tasks = [TaskNames.ocr_with_boxes]
else:
tasks = [TaskNames.ocr_without_boxes]
img_pred = predictors["recognition"](
[img],
task_names=tasks,
bboxes=bboxes,
det_predictor=predictors["detection"],
highres_images=[highres_img],
math_mode=recognize_math,
return_words=True,
)[0]
bboxes = [line.bbox for line in img_pred.text_lines]
text = [line.text for line in img_pred.text_lines]
rec_img = draw_text_on_image(bboxes, text, img.size)
word_boxes = []
for line in img_pred.text_lines:
if line.words:
word_boxes.extend([word.bbox for word in line.words])
box_img = img.copy()
draw = ImageDraw.Draw(box_img)
for word_box in word_boxes:
draw.rectangle(word_box, outline="red", width=2)
return rec_img, img_pred, box_img
def open_pdf(pdf_file):
return pypdfium2.PdfDocument(pdf_file)
def page_counter(pdf_file):
doc = open_pdf(pdf_file)
doc_len = len(doc)
doc.close()
return doc_len
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
doc.close()
return png_image
def get_uploaded_image(in_file):
return Image.open(in_file).convert("RGB")
# Load models if not already loaded in reload mode
predictors = load_predictors()
with gr.Blocks(title="Surya") as demo:
gr.Markdown("""
# Surya OCR Demo
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
Notes:
- This works best on documents with printed text.
- Preprocessing the image (e.g. increasing contrast) can improve results.
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
Find the project [here](https://github.com/VikParuchuri/surya).
""")
with gr.Row():
with gr.Column():
in_file = gr.File(label="PDF file or image:", file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".webp"])
in_num = gr.Slider(label="Page number", minimum=1, maximum=100, value=1, step=1)
in_img = gr.Image(label="Select page of Image", type="pil", sources=None)
ocr_errors_btn = gr.Button("Run bad PDF text detection")
text_det_btn = gr.Button("Run Text Detection")
layout_det_btn = gr.Button("Run Layout Analysis")
skip_text_detection_ckb = gr.Checkbox(label="Skip text detection", value=False, info="OCR only: Skip text detection and treat the whole image as a single line.")
recognize_math_ckb = gr.Checkbox(label="Recognize math in OCR", value=True, info="Enable math mode in OCR - this will recognize math.")
ocr_with_boxes_ckb = gr.Checkbox(label="OCR with boxes", value=True, info="Enable OCR with boxes - this will predict character-level boxes.")
text_rec_btn = gr.Button("Run OCR")
skip_table_detection_ckb = gr.Checkbox(label="Skip table detection", value=False, info="Table recognition only: Skip table detection and treat the whole image/page as a table.")
table_rec_btn = gr.Button("Run Table Rec")
with gr.Column():
result_img = gr.Gallery(label="Result images", show_label=True,
elem_id="gallery", columns=[1], rows=[2], object_fit="contain", height="auto")
gr.HTML("""
<style>
#gallery {
height: auto !important;
max-height: none !important;
overflow: visible !important;
}
#gallery .gallery-item {
flex-direction: column !important;
}
#gallery .gallery-item img {
width: 100% !important;
height: auto !important;
object-fit: contain !important;
}
</style>
""")
result_json = gr.JSON(label="Result json")
def show_image(file, num=1):
if file.endswith('.pdf'):
count = page_counter(file)
img = get_page_image(file, num, settings.IMAGE_DPI)
return [
gr.update(visible=True, maximum=count),
gr.update(value=img)]
else:
img = get_uploaded_image(file)
return [
gr.update(visible=False),
gr.update(value=img)]
in_file.upload(
fn=show_image,
inputs=[in_file],
outputs=[in_num, in_img],
)
in_num.change(
fn=show_image,
inputs=[in_file, in_num],
outputs=[in_num, in_img],
)
# Run Text Detection
def text_det_img(pil_image):
det_img, pred = text_detection(pil_image)
det_json = pred.model_dump(exclude=["heatmap", "affinity_map"])
return (
gr.update(label="Result image: text detected", value=[det_img], rows=[1], height=det_img.height),
gr.update(label="Result json: " + str(len(det_json['bboxes'])) + " text boxes detected", value=det_json)
)
text_det_btn.click(
fn=text_det_img,
inputs=[in_img],
outputs=[result_img, result_json]
)
# Run layout
def layout_det_img(pil_image):
layout_img, pred = layout_detection(pil_image)
layout_json = pred.model_dump(exclude=["segmentation_map"])
return (
gr.update(label="Result image: layout detected", value=[layout_img], rows=[1], height=layout_img.height),
gr.update(label="Result json: " + str(len(layout_json['bboxes'])) + " layout labels detected", value=layout_json)
)
layout_det_btn.click(
fn=layout_det_img,
inputs=[in_img],
outputs=[result_img, result_json]
)
# Run OCR
def text_rec_img(pil_image, in_file, page_number, skip_text_detection, recognize_math, ocr_with_boxes):
if in_file.endswith('.pdf'):
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES)
else:
pil_image_highres = pil_image
rec_img, pred, box_img = ocr(
pil_image,
pil_image_highres,
skip_text_detection,
recognize_math,
with_bboxes=ocr_with_boxes,
)
text_img = [(rec_img, "Text"), (box_img, "Boxes")]
text_json = pred.model_dump()
return (
gr.update(label="Result image: text recognized", value=text_img, rows=[2], height=rec_img.height + box_img.height),
gr.update(label="Result json: " + str(len(text_json['text_lines'])) + " text lines recognized", value=text_json)
)
text_rec_btn.click(
fn=text_rec_img,
inputs=[in_img, in_file, in_num, skip_text_detection_ckb, recognize_math_ckb, ocr_with_boxes_ckb],
outputs=[result_img, result_json]
)
# Run Table Recognition
def table_rec_img(pil_image, in_file, page_number, skip_table_detection):
if in_file.endswith('.pdf'):
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES)
else:
pil_image_highres = pil_image
table_img, pred = table_recognition(pil_image, pil_image_highres, skip_table_detection)
table_json = [p.model_dump() for p in pred]
return (
gr.update(label="Result image: table recognized", value=[table_img], rows=[1], height=table_img.height),
gr.update(label="Result json: " + str(len(table_json)) + " table tree recognized", value=table_json)
)
table_rec_btn.click(
fn=table_rec_img,
inputs=[in_img, in_file, in_num, skip_table_detection_ckb],
outputs=[result_img, result_json]
)
# Run bad PDF text detection
def ocr_errors_pdf(in_file):
if not in_file.endswith('.pdf'):
raise gr.Error("This feature only works with PDFs.", duration=5)
page_count = page_counter(in_file)
io_file = io.BytesIO(open(in_file.name, "rb").read())
layout_label, layout_json = ocr_errors(io_file, page_count)
return (
gr.update(label="Result image: NONE", value=None),
gr.update(label="Result json: " + layout_label, value=layout_json)
)
ocr_errors_btn.click(
fn=ocr_errors_pdf,
inputs=[in_file],
outputs=[result_img, result_json]
)
if __name__ == "__main__":
demo.launch()
|