|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from paddlenlp.transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...modeling_utils import ModelMixin |
|
from ...models import Transformer2DModel, VQModel |
|
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from ...schedulers import VQDiffusionScheduler |
|
from ...utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
INF = 1e9 |
|
|
|
|
|
|
|
def logsumexp(x, axis=None, keepdim=False): |
|
return paddle.log(x.exp().sum(axis=axis, keepdim=keepdim)) |
|
|
|
|
|
class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin): |
|
""" |
|
Utility class for storing learned text embeddings for classifier free sampling |
|
""" |
|
|
|
@register_to_config |
|
def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None): |
|
super().__init__() |
|
|
|
self.learnable = learnable |
|
|
|
if self.learnable: |
|
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" |
|
assert length is not None, "learnable=True requires `length` to be set" |
|
|
|
embeddings = paddle.zeros([length, hidden_size]) |
|
self.embeddings = self.create_parameter( |
|
embeddings.shape, default_initializer=nn.initializer.Assign(embeddings) |
|
) |
|
else: |
|
self.embeddings = None |
|
|
|
|
|
class VQDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using VQ Diffusion |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.) |
|
|
|
Args: |
|
vqvae ([`VQModel`]): |
|
Vector Quantized Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent |
|
representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. VQ Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
transformer ([`Transformer2DModel`]): |
|
Conditional transformer to denoise the encoded image latents. |
|
scheduler ([`VQDiffusionScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
""" |
|
|
|
vqvae: VQModel |
|
text_encoder: CLIPTextModel |
|
tokenizer: CLIPTokenizer |
|
transformer: Transformer2DModel |
|
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings |
|
scheduler: VQDiffusionScheduler |
|
|
|
def __init__( |
|
self, |
|
vqvae: VQModel, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
transformer: Transformer2DModel, |
|
scheduler: VQDiffusionScheduler, |
|
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vqvae=vqvae, |
|
transformer=transformer, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
scheduler=scheduler, |
|
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, |
|
) |
|
|
|
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance): |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pd", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length: |
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
text_embeddings = self.text_encoder(text_input_ids)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_embeddings = text_embeddings / text_embeddings.norm(axis=-1, keepdim=True) |
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1]) |
|
text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1]) |
|
|
|
if do_classifier_free_guidance: |
|
if self.learned_classifier_free_sampling_embeddings.learnable: |
|
uncond_embeddings = self.learned_classifier_free_sampling_embeddings.embeddings |
|
uncond_embeddings = uncond_embeddings.unsqueeze(0).tile([batch_size, 1, 1]) |
|
else: |
|
uncond_tokens = [""] * batch_size |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pd", |
|
) |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids)[0] |
|
|
|
uncond_embeddings = uncond_embeddings / uncond_embeddings.norm(axis=-1, keepdim=True) |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1]) |
|
uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1]) |
|
|
|
|
|
|
|
|
|
text_embeddings = paddle.concat([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
@paddle.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 5.0, |
|
truncation_rate: float = 1.0, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)): |
|
Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at |
|
most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above |
|
`truncation_rate` are set to zero. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`paddle.Generator`, *optional*): |
|
One or a list of paddle generator(s) to make generation deterministic. |
|
latents (`paddle.Tensor` of shape (batch), *optional*): |
|
Pre-generated noisy latents to be used as inputs for image generation. Must be valid embedding indices. |
|
Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will |
|
be generated of completely masked latent pixels. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput `] if |
|
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the |
|
generated images. |
|
""" |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
|
|
latents_shape = [batch_size, self.transformer.num_latent_pixels] |
|
if latents is None: |
|
mask_class = self.transformer.num_vector_embeds - 1 |
|
latents = paddle.full(latents_shape, mask_class, dtype="int64") |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): |
|
raise ValueError( |
|
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," |
|
f" {self.transformer.num_vector_embeds - 1} (inclusive)." |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
timesteps_tensor = self.scheduler.timesteps |
|
|
|
sample = latents |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)): |
|
|
|
latent_model_input = paddle.concat([sample] * 2) if do_classifier_free_guidance else sample |
|
|
|
|
|
|
|
model_output = self.transformer( |
|
latent_model_input, encoder_hidden_states=text_embeddings, timestep=t |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
model_output_uncond, model_output_text = model_output.chunk(2) |
|
model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) |
|
model_output -= logsumexp(model_output, axis=1, keepdim=True) |
|
|
|
model_output = self.truncate(model_output, truncation_rate) |
|
|
|
|
|
model_output = model_output.clip(-70) |
|
|
|
|
|
sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, sample) |
|
|
|
embedding_channels = self.vqvae.config.vq_embed_dim |
|
embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) |
|
embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape) |
|
image = self.vqvae.decode(embeddings, force_not_quantize=True).sample |
|
|
|
image = (image / 2 + 0.5).clip(0, 1) |
|
image = image.transpose([0, 2, 3, 1]).cast("float32").numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|
def truncate(self, log_p_x_0: paddle.Tensor, truncation_rate: float) -> paddle.Tensor: |
|
""" |
|
Truncates log_p_x_0 such that for each column vector, the total cumulative probability is `truncation_rate` The |
|
lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero. |
|
""" |
|
sorted_log_p_x_0, indices = paddle.topk(log_p_x_0, k=log_p_x_0.shape[1], axis=1) |
|
sorted_p_x_0 = paddle.exp(sorted_log_p_x_0) |
|
keep_mask = (sorted_p_x_0.cumsum(axis=1) < truncation_rate).cast("int64") |
|
|
|
|
|
all_true = paddle.full_like(keep_mask[:, 0:1, :], 1) |
|
keep_mask = paddle.concat((all_true, keep_mask), axis=1) |
|
keep_mask = keep_mask[:, :-1, :] |
|
|
|
keep_mask = paddle.take_along_axis(keep_mask, indices.argsort(1), axis=1).cast( |
|
"bool" |
|
) |
|
|
|
rv = log_p_x_0.clone() |
|
|
|
rv = paddle.where(keep_mask, rv, paddle.to_tensor(-INF, dtype="float32")) |
|
|
|
return rv |
|
|