File size: 13,812 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import json
import os
import time
import random
import torch
import re
import math
import gradio as gr
import numpy as np
from collections import defaultdict
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
class TorchTracemalloc:
track_memory_consumption = []
def __enter__(self):
self.begin = torch.cuda.memory_allocated()
torch.cuda.reset_max_memory_allocated()
return self
def __exit__(self, *exc):
peak = torch.cuda.max_memory_allocated()
peaked = (peak - self.begin) // 1024 ** 2
TorchTracemalloc.track_memory_consumption.append(peaked)
print(f"Memory consumed: {peaked} MB") # Debugging print
def format_response(dialog, response):
question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found')
return {"question": question, "answer": response}
# Global variables to store the model and tokenizer
global_model = None
global_tokenizer = None
def load_model_and_tokenizer(model_name, dtype, kv_bits):
global global_model, global_tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
if kv_bits != "unquantized":
quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad"
setattr(config, "quantizer_path", quantizer_path)
if dtype == "bf16":
dtype = torch.bfloat16
elif dtype == "fp16":
dtype = torch.float16
elif dtype == "fp32":
dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
global_model = model
global_tokenizer = tokenizer
def load_questions(prompts_path, custom_questions):
with open(prompts_path, "r") as file:
dialogs = json.load(file)
selected_dialogs = []
if custom_questions:
for question in custom_questions:
if question.strip():
custom_dialog = [{"role": "user", "content": question}]
selected_dialogs.append(custom_dialog)
num_questions = 60 - len(selected_dialogs)
random.shuffle(dialogs)
selected_dialogs.extend(dialogs[:num_questions])
return selected_dialogs[:60]
def markdown_to_plain_text(markdown_text):
# Convert markdown bold (**) to plain text uppercase
markdown_text = re.sub(r'\*\*(.*?)\*\*', r'\1'.upper(), markdown_text)
# Convert markdown italics (*) to plain text
markdown_text = re.sub(r'\*(.*?)\*', r'\1', markdown_text)
# Remove markdown headers (###)
markdown_text = re.sub(r'### ', '', markdown_text)
# Convert markdown lists (- or *)
markdown_text = re.sub(r'^\s*[-*]\s+', '', markdown_text, flags=re.MULTILINE)
# Remove remaining markdown formatting
markdown_text = re.sub(r'[`~>]', '', markdown_text)
return markdown_text
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()):
print("Starting inference...")
global global_model, global_tokenizer
model = global_model
tokenizer = global_tokenizer
batch_inputs = [
tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
for dialog in dialogs
]
responses = []
start_time = time.time()
batch_size = 60 # Adjust batch size based on GPU capacity
num_dialogs = len(dialogs)
# total_time = 0
# total_tokens = 0
# total_ttft = 0
# num_batches = (num_dialogs + batch_size - 1) // batch_size
actual_batch_size = min(batch_size, num_dialogs)
total_time = 0
total_tokens = 0
total_ttft = 0
num_batches = math.ceil(num_dialogs / actual_batch_size)
memory_avg = []
tokens_per_sec_avg = []
time_to_first_token_avg = []
responses_by_batch_size = defaultdict(list)
batch_generation_time = 0
total_generation_time = 0
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
with TorchTracemalloc() as tt:
for i in range(0, num_dialogs, actual_batch_size):
# for batch_idx in range(num_batches):
batch = batch_inputs[i : i + actual_batch_size]
try:
encoded_inputs = tokenizer(
batch,
padding=True,
truncation=False,
return_tensors="pt",
)
input_ids = encoded_inputs["input_ids"].to(model.device)
attention_mask = encoded_inputs["attention_mask"].to(
model.device
)
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
output_tokens = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=num_new_tokens,
num_return_sequences=1,
do_sample=True,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=terminators,
)
torch.cuda.synchronize()
end_time = time.perf_counter()
batch_time = end_time - start_time
total_time += batch_time
batch_generation_time += (
batch_time # Add to batch generation time
)
total_generation_time += (
batch_time # Add to total generation time
)
total_tokens += output_tokens.numel()
if i == 0:
total_ttft = batch_time
# if batch_idx == 0:
# total_ttft = batch_time
decoded_outputs = tokenizer.batch_decode(
output_tokens, skip_special_tokens=True
)
# decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
for j, response in enumerate(decoded_outputs):
original_dialog = dialogs[i + j]
formatted_responses = format_response(
original_dialog, response
)
responses.append(formatted_responses)
# responses_by_batch_size[batch_size].append(
# formatted_response
# )
# Format the responses
formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer']}" for res in responses])
plain_text_responses = markdown_to_plain_text(formatted_responses)
yield plain_text_responses
progress(i, desc="Processing batches")
torch.cuda.empty_cache()
except Exception as e:
print(
f"Error processing batch {i//batch_size + 1}: {str(e)}"
)
continue
elapsed_time = total_time
tokens_per_second = total_tokens / total_time if total_time > 0 else 0
# avg_memory_consumption = np.mean(TorchTracemalloc.track_memory_consumption)
total_memory_consumption = np.sum(TorchTracemalloc.track_memory_consumption)
avg_memory_consumption = total_memory_consumption/num_dialogs
# Use actual_batch_size in calculations
ttft = (
total_ttft / actual_batch_size if actual_batch_size > 0 else 0
)
print(f"Inference completed in {elapsed_time:.2f} seconds.")
yield {
"Time Taken (seconds)": elapsed_time,
"Tokens per Second": tokens_per_second,
"Time to First Token (TTFT, seconds)": ttft,
# "Formatted Responses": formatted_responses,
"Formatted Responses": plain_text_responses,
"Average Memory Consumption per Question (MB)": avg_memory_consumption,
"Total Memory Consumption (MB)": total_memory_consumption
}
# Demo function
def demo(num_new_tokens, temperature, custom_questions_text, kv_bits=1, progress=gr.Progress()):
custom_questions = custom_questions_text.split("\n")
print("Loading questions...")
dialogs = load_questions("chats_sys_none.json", custom_questions)
print(f"{len(dialogs)} questions loaded. Starting inference...")
result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress)
formatted_responses = ""
for result in result_gen:
if isinstance(result, str):
formatted_responses = result
yield None, None, None, None, None, None, None, formatted_responses
else:
time_taken = result["Time Taken (seconds)"]
tokens_per_second = result["Tokens per Second"]
ttft = result["Time to First Token (TTFT, seconds)"]
avg_memory_consumption = result["Average Memory Consumption per Question (MB)"]
total_memory_consumption = result["Total Memory Consumption (MB)"]
formatted_responses = result["Formatted Responses"]
yield time_taken, tokens_per_second, ttft, avg_memory_consumption, total_memory_consumption, formatted_responses
# Load JSON data
with open("chats_sys_none.json", "r") as file:
json_data = json.load(file)
# Load 50 random questions into the input area by default
def load_default_questions():
random.shuffle(json_data)
default_questions = [dialog[0]['content'] for dialog in json_data[:50] if 'content' in dialog[0]]
return "\n".join(default_questions)
# Load default questions on button click
def load_questions_action():
return load_default_questions()
# Gradio interface
css = """
body, html {
height: 100vh;
margin: 0;
}
.gradio-container {
height: 100vh;
}
#main-row {
height: 90vh;
display: flex;
}
#control-panel, #formatted-responses-container {
height: 90vh;
box-sizing: border-box;
display: flex;
flex-direction: column;
overflow: hidden;
flex: 1; /* Ensure equal width */
}
#control-panel {
flex: 1; /* Ensure equal height */
}
#custom-questions-text {
flex-grow: 1;
overflow-y: auto;
max-height: 30vh; /* Limit height of custom questions text */
}
#metrics-panel {
display: flex;
flex-wrap: wrap;
gap: 1vh;
margin-bottom: 1vh;
flex-shrink: 0;
height: auto; /* Let the panel size adjust based on its content */
}
#metrics-panel .metric {
flex: 1 1 48%;
min-width: 10vw;
box-sizing: border-box;
}
#buttons-container {
display: flex;
justify-content: space-between;
min-height: 6vh; /* Minimum height for buttons container */
flex-shrink: 0;
}
"""
with gr.Blocks(css=css) as app:
with gr.Row(elem_id="main-row", equal_height=True):
with gr.Column(elem_id="control-panel"):
num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=2048, step=128, value=512)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4)
custom_questions_text = gr.Textbox(
label="Custom Questions",
placeholder="Type your custom questions here, one per line...",
autoscroll=False,
container=False,
lines=5,
elem_id="custom-questions-text"
)
with gr.Row(elem_id="metrics-panel"):
time_taken = gr.Number(label="Time Taken (seconds)", interactive=False, elem_classes=["metric"])
tokens_per_second = gr.Number(label="Tokens per Second", interactive=False, elem_classes=["metric"])
ttft = gr.Number(label="Time to First Token (TTFT, seconds)", interactive=False, elem_classes=["metric"])
total_memory_consumption = gr.Number(label="Total Memory Consumption (MB)", interactive=False, elem_classes=["metric"])
avg_memory_consumption = gr.Number(label="Average Memory Consumption per Question (MB)", interactive=False, elem_classes=["metric"])
with gr.Row(elem_id="buttons-container"):
load_questions_btn = gr.Button("Load Default Questions")
demo_btn = gr.Button("Run Inference", elem_id="run-inference-btn")
formatted_responses = gr.Textbox(
label="Formatted Responses",
elem_id="formatted-responses",
value="No responses yet. Run the inference to see results.",
lines=37,
container=False,
autoscroll=False,
show_copy_button=True
)
load_questions_btn.click(fn=load_questions_action, inputs=[], outputs=custom_questions_text)
demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text], outputs=[time_taken, tokens_per_second, ttft, avg_memory_consumption, total_memory_consumption, formatted_responses])
if __name__ == "__main__":
print("Loading model and tokenizer on startup...")
# load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1")
print("Model and tokenizer loaded. Starting Gradio interface...")
app.launch() |