File size: 6,506 Bytes
9382e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import json
import os
import time
import torch
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

# Environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# Global variables to store the model and tokenizer
model = None
tokenizer = None

# Load model and tokenizer
def load_model_and_tokenizer(model_name, dtype, kv_bits):
    global model, tokenizer
    if model is None or tokenizer is None:
        print("Loading model and tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        special_tokens = {"pad_token": "<PAD>"}
        tokenizer.add_special_tokens(special_tokens)

        config = AutoConfig.from_pretrained(model_name)
        if kv_bits != "unquantized":
            quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad"
            setattr(config, "quantizer_path", quantizer_path)

        if dtype == "bf16":
            dtype = torch.bfloat16
        elif dtype == "fp16":
            dtype = torch.float16
        elif dtype == "fp32":
            dtype = torch.float32

        model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")

        if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
            model.resize_token_embeddings(len(tokenizer))

        tokenizer.padding_side = "left"
        model.config.pad_token_id = tokenizer.pad_token_id

    return model, tokenizer

# Format response
def format_response(dialog, response):
    formatted_dialog = dialog.copy()
    formatted_dialog.append({"role": "assistant", "content": response})
    return formatted_dialog

# Load questions
def load_questions(prompts_path, num_questions, custom_question):
    with open(prompts_path, "r") as file:
        dialogs = json.load(file)
    
    if custom_question and custom_question.strip():
        custom_dialog = [{"role": "user", "content": custom_question}]
        dialogs.insert(0, custom_dialog)
    
    dialogs = dialogs[:num_questions]
    return dialogs

# Inference
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits):
    print("Starting inference...")
    model, tokenizer = load_model_and_tokenizer(model_name, dtype, kv_bits)
    batch_inputs = [
        tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
        for dialog in dialogs
    ]

    responses = []
    start_time = time.time()

    batch_size = 20  # Set batch size for processing, this can be adjusted
    num_dialogs = len(dialogs)
    total_time = 0
    total_tokens = 0
    num_batches = (num_dialogs + batch_size - 1) // batch_size

    for batch_idx in range(num_batches):
        start_idx = batch_idx * batch_size
        end_idx = min(start_idx + batch_size, num_dialogs)
        batch = batch_inputs[start_idx:end_idx]

        encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt")
        input_ids = encoded_inputs["input_ids"].to(model.device)
        attention_mask = encoded_inputs["attention_mask"].to(model.device)

        with torch.no_grad():
            torch.cuda.synchronize()
            batch_start_time = time.perf_counter()
            
            output_tokens = model.generate(
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=num_new_tokens,
                do_sample=True,
                temperature=temperature,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
            
            torch.cuda.synchronize()
            batch_end_time = time.perf_counter()

            batch_time = batch_end_time - batch_start_time
            total_time += batch_time
            total_tokens += output_tokens.numel()

        decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)

        for i, response in enumerate(decoded_outputs):
            original_dialog = dialogs[start_idx + i]
            formatted_response = format_response(original_dialog, response)
            responses.append(formatted_response)

    elapsed_time = time.time() - start_time
    print(f"Inference completed in {elapsed_time:.2f} seconds.")

    results = {
        "Responses": responses,
        "Time Taken (seconds)": elapsed_time,
        "Tokens per Second": total_tokens / total_time if total_time > 0 else 0
    }

    return results

# Demo function
def demo(num_new_tokens, temperature, num_questions, custom_question, kv_bits):
    print("Loading questions...")
    dialogs = load_questions("chats_sys_none.json", num_questions, custom_question)
    print(f"{len(dialogs)} questions loaded. Starting inference...")
    results = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits)
    return results

# Load JSON data
with open("chats_sys_none.json", "r") as file:
    json_data = json.load(file)
json_data_str = json.dumps(json_data, indent=2)

# Show JSON function
def show_json():
    return json_data_str

# Gradio interface
interface = gr.Interface(
    fn=demo,
    inputs=[
        gr.Slider(label="Number of New Tokens", minimum=128, maximum=1024, step=128, value=512),
        gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4),
        gr.Slider(minimum=20, maximum=100, step=1, label="Number of Questions", value=20),
        gr.Textbox(label="Custom Question", placeholder="Type your custom question here..."),
        # gr.Dropdown(label="KV Bits", choices=["1", "2", "4", "unquantized"], value="1")
    ],
    outputs=[
        gr.JSON(label="Responses and Time Taken")
    ],
    title="LLM Inference Demo",
    description="A demo for running LLM inference using Gradio and Hugging Face.",
    live=False
)

json_interface = gr.Interface(
    fn=show_json,
    inputs=[],
    outputs=[
        gr.HTML("<pre>{}</pre>".format(json_data_str))
    ],
    live=False
)

app = gr.Blocks()

with app:
    with gr.Tab("LLM Inference Demo"):
        interface.render()
    with gr.Tab("Show JSON"):
        json_interface.render()

if __name__ == "__main__":
    print("Loading model and tokenizer on startup...")
    ## todo customized 2, 4 bits
    load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1")
    print("Model and tokenizer loaded. Starting Gradio interface...")
    app.launch()