import json import os import time import random import torch import re import math import gradio as gr import numpy as np from collections import defaultdict from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "0" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" class TorchTracemalloc: track_memory_consumption = [] def __enter__(self): self.begin = torch.cuda.memory_allocated() torch.cuda.reset_max_memory_allocated() return self def __exit__(self, *exc): peak = torch.cuda.max_memory_allocated() peaked = (peak - self.begin) // 1024 ** 2 TorchTracemalloc.track_memory_consumption.append(peaked) print(f"Memory consumed: {peaked} MB") # Debugging print def format_response(dialog, response): question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found') return {"question": question, "answer": response} # Global variables to store the model and tokenizer global_model = None global_tokenizer = None def load_model_and_tokenizer(model_name, dtype, kv_bits): global global_model, global_tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) special_tokens = {"pad_token": ""} tokenizer.add_special_tokens(special_tokens) config = AutoConfig.from_pretrained(model_name) if kv_bits != "unquantized": quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" setattr(config, "quantizer_path", quantizer_path) if dtype == "bf16": dtype = torch.bfloat16 elif dtype == "fp16": dtype = torch.float16 elif dtype == "fp32": dtype = torch.float32 model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: model.resize_token_embeddings(len(tokenizer)) tokenizer.padding_side = "left" model.config.pad_token_id = tokenizer.pad_token_id global_model = model global_tokenizer = tokenizer def load_questions(prompts_path, custom_questions): with open(prompts_path, "r") as file: dialogs = json.load(file) selected_dialogs = [] if custom_questions: for question in custom_questions: if question.strip(): custom_dialog = [{"role": "user", "content": question}] selected_dialogs.append(custom_dialog) num_questions = 60 - len(selected_dialogs) random.shuffle(dialogs) selected_dialogs.extend(dialogs[:num_questions]) return selected_dialogs[:60] def markdown_to_plain_text(markdown_text): # Convert markdown bold (**) to plain text uppercase markdown_text = re.sub(r'\*\*(.*?)\*\*', r'\1'.upper(), markdown_text) # Convert markdown italics (*) to plain text markdown_text = re.sub(r'\*(.*?)\*', r'\1', markdown_text) # Remove markdown headers (###) markdown_text = re.sub(r'### ', '', markdown_text) # Convert markdown lists (- or *) markdown_text = re.sub(r'^\s*[-*]\s+', '', markdown_text, flags=re.MULTILINE) # Remove remaining markdown formatting markdown_text = re.sub(r'[`~>]', '', markdown_text) return markdown_text def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()): print("Starting inference...") global global_model, global_tokenizer model = global_model tokenizer = global_tokenizer batch_inputs = [ tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True) for dialog in dialogs ] responses = [] start_time = time.time() batch_size = 60 # Adjust batch size based on GPU capacity num_dialogs = len(dialogs) # total_time = 0 # total_tokens = 0 # total_ttft = 0 # num_batches = (num_dialogs + batch_size - 1) // batch_size actual_batch_size = min(batch_size, num_dialogs) total_time = 0 total_tokens = 0 total_ttft = 0 num_batches = math.ceil(num_dialogs / actual_batch_size) memory_avg = [] tokens_per_sec_avg = [] time_to_first_token_avg = [] responses_by_batch_size = defaultdict(list) batch_generation_time = 0 total_generation_time = 0 terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), ] with TorchTracemalloc() as tt: for i in range(0, num_dialogs, actual_batch_size): # for batch_idx in range(num_batches): batch = batch_inputs[i : i + actual_batch_size] try: encoded_inputs = tokenizer( batch, padding=True, truncation=False, return_tensors="pt", ) input_ids = encoded_inputs["input_ids"].to(model.device) attention_mask = encoded_inputs["attention_mask"].to( model.device ) torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): output_tokens = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=num_new_tokens, num_return_sequences=1, do_sample=True, temperature=temperature, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators, ) torch.cuda.synchronize() end_time = time.perf_counter() batch_time = end_time - start_time total_time += batch_time batch_generation_time += ( batch_time # Add to batch generation time ) total_generation_time += ( batch_time # Add to total generation time ) total_tokens += output_tokens.numel() if i == 0: total_ttft = batch_time # if batch_idx == 0: # total_ttft = batch_time decoded_outputs = tokenizer.batch_decode( output_tokens, skip_special_tokens=True ) # decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True) for j, response in enumerate(decoded_outputs): original_dialog = dialogs[i + j] formatted_responses = format_response( original_dialog, response ) responses.append(formatted_responses) # responses_by_batch_size[batch_size].append( # formatted_response # ) # Format the responses formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer']}" for res in responses]) plain_text_responses = markdown_to_plain_text(formatted_responses) yield plain_text_responses progress(i, desc="Processing batches") torch.cuda.empty_cache() except Exception as e: print( f"Error processing batch {i//batch_size + 1}: {str(e)}" ) continue elapsed_time = total_time tokens_per_second = total_tokens / total_time if total_time > 0 else 0 # avg_memory_consumption = np.mean(TorchTracemalloc.track_memory_consumption) total_memory_consumption = np.sum(TorchTracemalloc.track_memory_consumption) avg_memory_consumption = total_memory_consumption/num_dialogs # Use actual_batch_size in calculations ttft = ( total_ttft / actual_batch_size if actual_batch_size > 0 else 0 ) print(f"Inference completed in {elapsed_time:.2f} seconds.") yield { "Time Taken (seconds)": elapsed_time, "Tokens per Second": tokens_per_second, "Time to First Token (TTFT, seconds)": ttft, # "Formatted Responses": formatted_responses, "Formatted Responses": plain_text_responses, "Average Memory Consumption per Question (MB)": avg_memory_consumption, "Total Memory Consumption (MB)": total_memory_consumption } # Demo function def demo(num_new_tokens, temperature, custom_questions_text, kv_bits=1, progress=gr.Progress()): custom_questions = custom_questions_text.split("\n") print("Loading questions...") dialogs = load_questions("chats_sys_none.json", custom_questions) print(f"{len(dialogs)} questions loaded. Starting inference...") result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress) formatted_responses = "" for result in result_gen: if isinstance(result, str): formatted_responses = result yield None, None, None, None, None, None, None, formatted_responses else: time_taken = result["Time Taken (seconds)"] tokens_per_second = result["Tokens per Second"] ttft = result["Time to First Token (TTFT, seconds)"] avg_memory_consumption = result["Average Memory Consumption per Question (MB)"] total_memory_consumption = result["Total Memory Consumption (MB)"] formatted_responses = result["Formatted Responses"] yield time_taken, tokens_per_second, ttft, avg_memory_consumption, total_memory_consumption, formatted_responses # Load JSON data with open("chats_sys_none.json", "r") as file: json_data = json.load(file) # Load 50 random questions into the input area by default def load_default_questions(): random.shuffle(json_data) default_questions = [dialog[0]['content'] for dialog in json_data[:50] if 'content' in dialog[0]] return "\n".join(default_questions) # Load default questions on button click def load_questions_action(): return load_default_questions() # Gradio interface css = """ body, html { height: 100vh; margin: 0; } .gradio-container { height: 100vh; } #main-row { height: 90vh; display: flex; } #control-panel, #formatted-responses-container { height: 90vh; box-sizing: border-box; display: flex; flex-direction: column; overflow: hidden; flex: 1; /* Ensure equal width */ } #control-panel { flex: 1; /* Ensure equal height */ } #custom-questions-text { flex-grow: 1; overflow-y: auto; max-height: 30vh; /* Limit height of custom questions text */ } #metrics-panel { display: flex; flex-wrap: wrap; gap: 1vh; margin-bottom: 1vh; flex-shrink: 0; height: auto; /* Let the panel size adjust based on its content */ } #metrics-panel .metric { flex: 1 1 48%; min-width: 10vw; box-sizing: border-box; } #buttons-container { display: flex; justify-content: space-between; min-height: 6vh; /* Minimum height for buttons container */ flex-shrink: 0; } """ with gr.Blocks(css=css) as app: with gr.Row(elem_id="main-row", equal_height=True): with gr.Column(elem_id="control-panel"): num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=2048, step=128, value=512) temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4) custom_questions_text = gr.Textbox( label="Custom Questions", placeholder="Type your custom questions here, one per line...", autoscroll=False, container=False, lines=5, elem_id="custom-questions-text" ) with gr.Row(elem_id="metrics-panel"): time_taken = gr.Number(label="Time Taken (seconds)", interactive=False, elem_classes=["metric"]) tokens_per_second = gr.Number(label="Tokens per Second", interactive=False, elem_classes=["metric"]) ttft = gr.Number(label="Time to First Token (TTFT, seconds)", interactive=False, elem_classes=["metric"]) total_memory_consumption = gr.Number(label="Total Memory Consumption (MB)", interactive=False, elem_classes=["metric"]) avg_memory_consumption = gr.Number(label="Average Memory Consumption per Question (MB)", interactive=False, elem_classes=["metric"]) with gr.Row(elem_id="buttons-container"): load_questions_btn = gr.Button("Load Default Questions") demo_btn = gr.Button("Run Inference", elem_id="run-inference-btn") formatted_responses = gr.Textbox( label="Formatted Responses", elem_id="formatted-responses", value="No responses yet. Run the inference to see results.", lines=37, container=False, autoscroll=False, show_copy_button=True ) load_questions_btn.click(fn=load_questions_action, inputs=[], outputs=custom_questions_text) demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text], outputs=[time_taken, tokens_per_second, ttft, avg_memory_consumption, total_memory_consumption, formatted_responses]) if __name__ == "__main__": print("Loading model and tokenizer on startup...") # load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1") print("Model and tokenizer loaded. Starting Gradio interface...") app.launch()