Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from transformers import AutoModel, CLIPImageProcessor | |
import gradio as gr | |
# Load the model | |
model = AutoModel.from_pretrained( | |
'OpenGVLab/InternVL2_5-1B', | |
torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_flash_attn=False # Disable Flash Attention | |
).eval() # Do not move to CUDA, force CPU execution | |
# Load the image processor | |
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternVL2_5-1B') | |
# Define the function to process the image and generate outputs | |
def process_image(image): | |
try: | |
# Convert uploaded image to RGB | |
image = image.convert('RGB') | |
# Preprocess the image | |
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values | |
# Run the model on CPU | |
outputs = model(pixel_values) | |
# Assuming the model returns embeddings or features | |
return f"Output Shape: {outputs.last_hidden_state.shape}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=process_image, # Function to process the input | |
inputs=gr.Image(type="pil"), # Accepts images as input | |
outputs=gr.Textbox(label="Model Output"), # Displays model output | |
title="InternViT Demo", | |
description="Upload an image to process it using the InternViT model from OpenGVLab." | |
) | |
# Launch the demo | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |