Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 4 |
+
from qwen_vl_utils import process_vision_info
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 10 |
+
|
| 11 |
+
DESCRIPTION = "[Sparrow Qwen2-VL-7B Backend](https://github.com/katanaml/sparrow)"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def array_to_image_path(image_filepath, max_width=1250, max_height=1750):
|
| 15 |
+
if image_filepath is None:
|
| 16 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
| 17 |
+
|
| 18 |
+
# Open the uploaded image using its filepath
|
| 19 |
+
img = Image.open(image_filepath)
|
| 20 |
+
|
| 21 |
+
# Extract the file extension from the uploaded file
|
| 22 |
+
input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath
|
| 23 |
+
|
| 24 |
+
# Set file extension based on the original file, otherwise default to PNG
|
| 25 |
+
if input_image_extension in ['jpg', 'jpeg', 'png']:
|
| 26 |
+
file_extension = input_image_extension
|
| 27 |
+
else:
|
| 28 |
+
file_extension = 'png' # Default to PNG if extension is unavailable or invalid
|
| 29 |
+
|
| 30 |
+
# Get the current dimensions of the image
|
| 31 |
+
width, height = img.size
|
| 32 |
+
|
| 33 |
+
# Initialize new dimensions to current size
|
| 34 |
+
new_width, new_height = width, height
|
| 35 |
+
|
| 36 |
+
# Check if the image exceeds the maximum dimensions
|
| 37 |
+
if width > max_width or height > max_height:
|
| 38 |
+
# Calculate the new size, maintaining the aspect ratio
|
| 39 |
+
aspect_ratio = width / height
|
| 40 |
+
|
| 41 |
+
if width > max_width:
|
| 42 |
+
new_width = max_width
|
| 43 |
+
new_height = int(new_width / aspect_ratio)
|
| 44 |
+
|
| 45 |
+
if new_height > max_height:
|
| 46 |
+
new_height = max_height
|
| 47 |
+
new_width = int(new_height * aspect_ratio)
|
| 48 |
+
|
| 49 |
+
# Generate a unique filename using timestamp
|
| 50 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 51 |
+
filename = f"image_{timestamp}.{file_extension}"
|
| 52 |
+
|
| 53 |
+
# Save the image
|
| 54 |
+
img.save(filename)
|
| 55 |
+
|
| 56 |
+
# Get the full path of the saved image
|
| 57 |
+
full_path = os.path.abspath(filename)
|
| 58 |
+
|
| 59 |
+
return full_path, new_width, new_height
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Initialize the model and processor globally to optimize performance
|
| 63 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 64 |
+
"Qwen/Qwen2-VL-7B-Instruct",
|
| 65 |
+
torch_dtype="auto",
|
| 66 |
+
device_map="auto"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@spaces.GPU
|
| 73 |
+
def run_inference(input_imgs, text_input):
|
| 74 |
+
results = []
|
| 75 |
+
|
| 76 |
+
for image in input_imgs:
|
| 77 |
+
# Convert each image to the required format
|
| 78 |
+
image_path, width, height = array_to_image_path(image)
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
# Prepare messages for each image
|
| 82 |
+
messages = [
|
| 83 |
+
{
|
| 84 |
+
"role": "user",
|
| 85 |
+
"content": [
|
| 86 |
+
{
|
| 87 |
+
"type": "image",
|
| 88 |
+
"image": image_path,
|
| 89 |
+
"resized_height": height,
|
| 90 |
+
"resized_width": width
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"type": "text",
|
| 94 |
+
"text": text_input
|
| 95 |
+
}
|
| 96 |
+
]
|
| 97 |
+
}
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
# Prepare inputs for the model
|
| 101 |
+
text = processor.apply_chat_template(
|
| 102 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 106 |
+
inputs = processor(
|
| 107 |
+
text=[text],
|
| 108 |
+
images=image_inputs,
|
| 109 |
+
videos=video_inputs,
|
| 110 |
+
padding=True,
|
| 111 |
+
return_tensors="pt",
|
| 112 |
+
)
|
| 113 |
+
inputs = inputs.to("cuda")
|
| 114 |
+
|
| 115 |
+
# Generate inference output
|
| 116 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096)
|
| 117 |
+
generated_ids_trimmed = [
|
| 118 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 119 |
+
]
|
| 120 |
+
raw_output = processor.batch_decode(
|
| 121 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
results.append(raw_output[0])
|
| 125 |
+
print("Processed: " + image)
|
| 126 |
+
finally:
|
| 127 |
+
# Clean up the temporary image file
|
| 128 |
+
os.remove(image_path)
|
| 129 |
+
|
| 130 |
+
return results
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
css = """
|
| 134 |
+
#output {
|
| 135 |
+
height: 500px;
|
| 136 |
+
overflow: auto;
|
| 137 |
+
border: 1px solid #ccc;
|
| 138 |
+
}
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
with gr.Blocks(css=css) as demo:
|
| 142 |
+
gr.Markdown(DESCRIPTION)
|
| 143 |
+
with gr.Tab(label="Qwen2-VL-7B Input"):
|
| 144 |
+
with gr.Row():
|
| 145 |
+
with gr.Column():
|
| 146 |
+
input_imgs = gr.Files(file_types=["image"], label="Upload Document Images")
|
| 147 |
+
text_input = gr.Textbox(label="Query")
|
| 148 |
+
submit_btn = gr.Button(value="Submit", variant="primary")
|
| 149 |
+
with gr.Column():
|
| 150 |
+
output_text = gr.Textbox(label="Response")
|
| 151 |
+
|
| 152 |
+
submit_btn.click(run_inference, [input_imgs, text_input], [output_text])
|
| 153 |
+
|
| 154 |
+
demo.queue(api_open=True)
|
| 155 |
+
demo.launch(debug=True)
|