import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info from PIL import Image from datetime import datetime import os # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) DESCRIPTION = "[Sparrow Qwen2-VL-7B Backend](https://github.com/katanaml/sparrow)" def array_to_image_path(image_filepath, max_width=1250, max_height=1750): if image_filepath is None: raise ValueError("No image provided. Please upload an image before submitting.") # Open the uploaded image using its filepath img = Image.open(image_filepath) # Extract the file extension from the uploaded file input_image_extension = image_filepath.split('.')[-1].lower() # Extract extension from filepath # Set file extension based on the original file, otherwise default to PNG if input_image_extension in ['jpg', 'jpeg', 'png']: file_extension = input_image_extension else: file_extension = 'png' # Default to PNG if extension is unavailable or invalid # Get the current dimensions of the image width, height = img.size # Initialize new dimensions to current size new_width, new_height = width, height # Check if the image exceeds the maximum dimensions if width > max_width or height > max_height: # Calculate the new size, maintaining the aspect ratio aspect_ratio = width / height if width > max_width: new_width = max_width new_height = int(new_width / aspect_ratio) if new_height > max_height: new_height = max_height new_width = int(new_height * aspect_ratio) # Generate a unique filename using timestamp timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{timestamp}.{file_extension}" # Save the image img.save(filename) # Get the full path of the saved image full_path = os.path.abspath(filename) return full_path, new_width, new_height # Initialize the model and processor globally to optimize performance model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") @spaces.GPU def run_inference(input_imgs, text_input): results = [] for image in input_imgs: # Convert each image to the required format image_path, width, height = array_to_image_path(image) try: # Prepare messages for each image messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, "resized_height": height, "resized_width": width }, { "type": "text", "text": text_input } ] } ] # Prepare inputs for the model text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Generate inference output generated_ids = model.generate(**inputs, max_new_tokens=4096) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] raw_output = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True ) results.append(raw_output[0]) print("Processed: " + image) finally: # Clean up the temporary image file os.remove(image_path) return results css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Qwen2-VL-7B Input"): with gr.Row(): with gr.Column(): input_imgs = gr.Files(file_types=["image"], label="Upload Document Images") text_input = gr.Textbox(label="Query") submit_btn = gr.Button(value="Submit", variant="primary") with gr.Column(): output_text = gr.Textbox(label="Response") submit_btn.click(run_inference, [input_imgs, text_input], [output_text]) demo.queue(api_open=True) demo.launch(debug=True)