from fastapi import FastAPI, HTTPException from pydantic import BaseModel import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM import logging import re app = FastAPI() # Enable CORS if needed from fastapi.middleware.cors import CORSMiddleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # In production, restrict this to your frontend URL allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) #################################### # Text Generation Endpoint #################################### TEXT_MODEL_NAME = "aubmindlab/aragpt2-medium" text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME) text_model = AutoModelForCausalLM.from_pretrained(TEXT_MODEL_NAME) general_prompt_template = """ أنت الآن نموذج لغة مخصص لتوليد نصوص عربية تعليمية بناءً على المادة والمستوى التعليمي. سيتم إعطاؤك مادة تعليمية ومستوى تعليمي، وعليك إنشاء نص مناسب بناءً على ذلك. النص يجب أن يكون: 1. واضحًا وسهل الفهم. 2. مناسبًا للمستوى التعليمي المحدد. 3. مرتبطًا بالمادة التعليمية المطلوبة. 4. قصيرًا ومباشرًا. ### أمثلة: 1. المادة: العلوم المستوى: الابتدائي النص: النباتات كائنات حية تحتاج إلى الماء والهواء وضوء الشمس لتنمو. بعض النباتات تنتج أزهارًا وفواكه. النباتات تساعدنا في الحصول على الأكسجين. 2. المادة: التاريخ المستوى: المتوسط النص: التاريخ هو دراسة الماضي وأحداثه المهمة. من خلال التاريخ، نتعلم عن الحضارات القديمة مثل الحضارة الفرعونية والحضارة الإسلامية. التاريخ يساعدنا على فهم تطور البشرية. 3. المادة: الجغرافيا المستوى: المتوسط النص: الجغرافيا هي دراسة الأرض وخصائصها. نتعلم عن القارات والمحيطات والجبال. الجغرافيا تساعدنا على فهم العالم من حولنا. --- المادة: {المادة} المستوى: {المستوى} اكتب نصًا مناسبًا بناءً على المادة والمستوى المحددين. ركّز على جعل النص بسيطًا وواضحًا للمستوى المطلوب. """ class GenerateTextRequest(BaseModel): المادة: str المستوى: str @app.post("/generate-text") def generate_text(request: GenerateTextRequest): if not request.المادة or not request.المستوى: raise HTTPException(status_code=400, detail="المادة والمستوى مطلوبان.") try: prompt = general_prompt_template.format(المادة=request.المادة, المستوى=request.المستوى) inputs = text_tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True) with torch.no_grad(): outputs = text_model.generate( inputs.input_ids, max_length=300, num_return_sequences=1, temperature=0.7, top_p=0.95, do_sample=True, ) generated_text = text_tokenizer.decode(outputs[0], skip_special_tokens=True).replace(prompt, "").strip() logger.info(f"Generated text: {generated_text}") return {"generated_text": generated_text} except Exception as e: logger.error(f"Error during text generation: {str(e)}") raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}") #################################### # Question & Answer Generation Model #################################### QA_MODEL_NAME = "Mihakram/AraT5-base-question-generation" qa_tokenizer = AutoTokenizer.from_pretrained(QA_MODEL_NAME) qa_model = AutoModelForSeq2SeqLM.from_pretrained(QA_MODEL_NAME) def extract_answer(context: str) -> str: """Extract the first sentence (or a key phrase) from the context.""" sentences = re.split(r'[.!؟]', context) sentences = [s.strip() for s in sentences if s.strip()] return sentences[0] if sentences else context def get_question(context: str, answer: str) -> str: """Generate a question based on the context and the candidate answer.""" text = f"النص: {context} الإجابة: {answer} " text_encoding = qa_tokenizer.encode_plus(text, return_tensors="pt") with torch.no_grad(): generated_ids = qa_model.generate( input_ids=text_encoding['input_ids'], attention_mask=text_encoding['attention_mask'], max_length=64, num_beams=5, num_return_sequences=1 ) question = qa_tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace("question:", "").strip() return question class GenerateQARequest(BaseModel): text: str @app.post("/generate-qa") def generate_qa(request: GenerateQARequest): if not request.text: raise HTTPException(status_code=400, detail="Text is required.") try: question, answer = get_question(request.text, extract_answer(request.text)) logger.info(f"Generated QA -> Question: {question}, Answer: {answer}") return {"question": question, "answer": answer} except Exception as e: logger.error(f"Error during QA generation: {str(e)}") raise HTTPException(status_code=500, detail=f"Error during QA generation: {str(e)}") #################################### # Root Endpoint #################################### @app.get("/") def read_root(): return {"message": "Welcome to the Arabic Text Generation API!"} ################################### # Running the FastAPI Server #################################### import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)