Spaces:
Build error
Build error
yama
commited on
Commit
·
1de0e6b
1
Parent(s):
bef704a
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,43 @@
|
|
1 |
# import whisper
|
2 |
from faster_whisper import WhisperModel
|
3 |
import datetime
|
4 |
-
import subprocess
|
5 |
import gradio as gr
|
6 |
-
from pathlib import Path
|
7 |
import pandas as pd
|
8 |
-
import re
|
9 |
import time
|
10 |
import os
|
11 |
import numpy as np
|
12 |
from sklearn.cluster import AgglomerativeClustering
|
13 |
from sklearn.metrics import silhouette_score
|
14 |
|
15 |
-
from pytube import YouTube
|
16 |
-
import yt_dlp
|
17 |
import torch
|
18 |
import pyannote.audio
|
19 |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
20 |
from pyannote.audio import Audio
|
21 |
from pyannote.core import Segment
|
22 |
|
23 |
-
from gpuinfo import GPUInfo
|
24 |
|
25 |
import wave
|
26 |
import contextlib
|
27 |
from transformers import pipeline
|
28 |
-
import psutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
31 |
source_languages = {
|
32 |
-
"ja": "Japanese",
|
33 |
"en": "English",
|
34 |
# "zh": "Chinese",
|
35 |
# "de": "German",
|
@@ -37,6 +45,7 @@ source_languages = {
|
|
37 |
# "ru": "Russian",
|
38 |
# "ko": "Korean",
|
39 |
# "fr": "French",
|
|
|
40 |
# "pt": "Portuguese",
|
41 |
# "tr": "Turkish",
|
42 |
# "pl": "Polish",
|
@@ -136,6 +145,7 @@ MODEL_NAME = "vumichien/whisper-medium-jp"
|
|
136 |
lang = "ja"
|
137 |
|
138 |
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
139 |
pipe = pipeline(
|
140 |
task="automatic-speech-recognition",
|
141 |
model=MODEL_NAME,
|
@@ -147,10 +157,10 @@ pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(lan
|
|
147 |
|
148 |
embedding_model = PretrainedSpeakerEmbedding(
|
149 |
"speechbrain/spkrec-ecapa-voxceleb",
|
150 |
-
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
151 |
|
152 |
|
153 |
-
# 音声データの転記
|
154 |
# def transcribe(microphone, file_upload):
|
155 |
# warn_output = ""
|
156 |
# if (microphone is not None) and (file_upload is not None):
|
@@ -169,7 +179,6 @@ embedding_model = PretrainedSpeakerEmbedding(
|
|
169 |
# return warn_output + text
|
170 |
|
171 |
|
172 |
-
# YouTubeの埋め込みプレーヤーを表示するHTMLコードを生成する
|
173 |
# def _return_yt_html_embed(yt_url):
|
174 |
# video_id = yt_url.split("?v=")[-1]
|
175 |
# HTML_str = (
|
@@ -179,7 +188,6 @@ embedding_model = PretrainedSpeakerEmbedding(
|
|
179 |
# return HTML_str
|
180 |
|
181 |
|
182 |
-
# YouTubeのビデオから音声をダウンロードし、音声データを使用して転写を行う
|
183 |
# def yt_transcribe(yt_url):
|
184 |
# # yt = YouTube(yt_url)
|
185 |
# # html_embed_str = _return_yt_html_embed(yt_url)
|
@@ -203,12 +211,10 @@ embedding_model = PretrainedSpeakerEmbedding(
|
|
203 |
# return html_embed_str, text
|
204 |
|
205 |
|
206 |
-
# 秒数を時刻表記に変換
|
207 |
def convert_time(secs):
|
208 |
return datetime.timedelta(seconds=round(secs))
|
209 |
|
210 |
|
211 |
-
# YouTubeのビデオをダウンロードする
|
212 |
# def get_youtube(video_url):
|
213 |
# # yt = YouTube(video_url)
|
214 |
# # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
@@ -226,7 +232,7 @@ def convert_time(secs):
|
|
226 |
# print(abs_video_path)
|
227 |
# return abs_video_path
|
228 |
|
229 |
-
|
230 |
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
|
231 |
"""
|
232 |
# Transcribe youtube link using OpenAI Whisper
|
@@ -338,148 +344,110 @@ def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_spe
|
|
338 |
|
339 |
time_end = time.time()
|
340 |
time_diff = time_end - time_start
|
341 |
-
memory = psutil.virtual_memory()
|
342 |
-
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
343 |
-
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
|
344 |
-
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
|
345 |
-
system_info = f"""
|
346 |
-
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
|
347 |
-
*Processing time: {time_diff:.5} seconds.*
|
348 |
-
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
|
349 |
-
"""
|
350 |
save_path = "output/transcript_result.csv"
|
351 |
df_results = pd.DataFrame(objects)
|
352 |
df_results.to_csv(save_path)
|
353 |
-
return df_results, system_info, save_path
|
|
|
354 |
|
355 |
except Exception as e:
|
356 |
raise RuntimeError("Error Running inference with local model", e)
|
357 |
|
358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
# ---- Gradio Layout -----
|
360 |
-
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
|
361 |
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
362 |
-
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
363 |
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
364 |
-
memory = psutil.virtual_memory()
|
365 |
-
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja",
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
number_speakers = gr.Number(precision=0, value=0,
|
370 |
-
label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
|
371 |
-
interactive=True)
|
372 |
-
system_info = gr.Markdown(
|
373 |
-
f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
|
374 |
download_transcript = gr.File(label="Download transcript")
|
375 |
-
transcription_df = gr.DataFrame(value=df_init,
|
376 |
-
|
377 |
-
|
378 |
-
demo =
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
with gr.Column():
|
419 |
-
video_in.render()
|
420 |
-
with gr.Column():
|
421 |
-
gr.Markdown('''
|
422 |
-
##### Here you can start the transcription process.
|
423 |
-
##### Please select the source language for transcription.
|
424 |
-
##### You can select a range of assumed numbers of speakers.
|
425 |
-
''')
|
426 |
-
selected_source_lang.render()
|
427 |
-
selected_whisper_model.render()
|
428 |
-
number_speakers.render()
|
429 |
-
transcribe_btn = gr.Button("Transcribe audio and diarization")
|
430 |
-
transcribe_btn.click(speech_to_text,
|
431 |
-
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
432 |
-
[transcription_df, system_info, download_transcript]
|
433 |
-
)
|
434 |
-
|
435 |
-
with gr.Row():
|
436 |
-
gr.Markdown('''
|
437 |
-
##### Here you will get transcription output
|
438 |
-
##### ''')
|
439 |
-
|
440 |
-
with gr.Row():
|
441 |
-
with gr.Column():
|
442 |
-
download_transcript.render()
|
443 |
-
transcription_df.render()
|
444 |
-
# system_info.render()
|
445 |
-
# gr.Markdown(
|
446 |
-
# '''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
|
447 |
-
|
448 |
-
# with gr.Tab("Whisper Transcribe Japanese Audio"):
|
449 |
-
# gr.Markdown(f'''
|
450 |
-
# <div>
|
451 |
-
# <h1 style='text-align: center'>Whisper Transcribe Japanese Audio</h1>
|
452 |
-
# </div>
|
453 |
-
# Transcribe long-form microphone or audio inputs with the click of a button! The fine-tuned
|
454 |
-
# checkpoint <a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
455 |
-
# ''')
|
456 |
-
# microphone = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
|
457 |
-
# upload = gr.inputs.Audio(source="upload", type="filepath", optional=True)
|
458 |
-
# transcribe_btn = gr.Button("Transcribe Audio")
|
459 |
-
# text_output = gr.Textbox()
|
460 |
-
# with gr.Row():
|
461 |
-
# gr.Markdown('''
|
462 |
-
# ### You can test by following examples:
|
463 |
-
# ''')
|
464 |
-
# examples = gr.Examples(examples=
|
465 |
-
# ["sample1.wav",
|
466 |
-
# "sample2.wav",
|
467 |
-
# ],
|
468 |
-
# label="Examples", inputs=[upload])
|
469 |
-
# transcribe_btn.click(transcribe, [microphone, upload], outputs=text_output)
|
470 |
-
#
|
471 |
-
# with gr.Tab("Whisper Transcribe Japanese YouTube"):
|
472 |
-
# gr.Markdown(f'''
|
473 |
-
# <div>
|
474 |
-
# <h1 style='text-align: center'>Whisper Transcribe Japanese YouTube</h1>
|
475 |
-
# </div>
|
476 |
-
# Transcribe long-form YouTube videos with the click of a button! The fine-tuned checkpoint:
|
477 |
-
# <a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
478 |
-
# ''')
|
479 |
-
# youtube_link = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
480 |
-
# yt_transcribe_btn = gr.Button("Transcribe YouTube")
|
481 |
-
# text_output2 = gr.Textbox()
|
482 |
-
# html_output = gr.Markdown()
|
483 |
-
# yt_transcribe_btn.click(yt_transcribe, [youtube_link], outputs=[html_output, text_output2])
|
484 |
-
|
485 |
-
demo.launch(debug=True)
|
|
|
1 |
# import whisper
|
2 |
from faster_whisper import WhisperModel
|
3 |
import datetime
|
4 |
+
# import subprocess
|
5 |
import gradio as gr
|
6 |
+
# from pathlib import Path
|
7 |
import pandas as pd
|
8 |
+
# import re
|
9 |
import time
|
10 |
import os
|
11 |
import numpy as np
|
12 |
from sklearn.cluster import AgglomerativeClustering
|
13 |
from sklearn.metrics import silhouette_score
|
14 |
|
15 |
+
# from pytube import YouTube
|
16 |
+
# import yt_dlp
|
17 |
import torch
|
18 |
import pyannote.audio
|
19 |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
20 |
from pyannote.audio import Audio
|
21 |
from pyannote.core import Segment
|
22 |
|
23 |
+
# from gpuinfo import GPUInfo
|
24 |
|
25 |
import wave
|
26 |
import contextlib
|
27 |
from transformers import pipeline
|
28 |
+
# import psutil
|
29 |
+
|
30 |
+
# import gradio as gr
|
31 |
+
import openai
|
32 |
+
import os
|
33 |
+
# from io import BytesIO
|
34 |
+
import tempfile
|
35 |
+
from pydub import AudioSegment
|
36 |
+
# import shutil
|
37 |
+
|
38 |
|
39 |
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
40 |
source_languages = {
|
|
|
41 |
"en": "English",
|
42 |
# "zh": "Chinese",
|
43 |
# "de": "German",
|
|
|
45 |
# "ru": "Russian",
|
46 |
# "ko": "Korean",
|
47 |
# "fr": "French",
|
48 |
+
"ja": "Japanese",
|
49 |
# "pt": "Portuguese",
|
50 |
# "tr": "Turkish",
|
51 |
# "pl": "Polish",
|
|
|
145 |
lang = "ja"
|
146 |
|
147 |
device = 0 if torch.cuda.is_available() else "cpu"
|
148 |
+
# device = "cpu"
|
149 |
pipe = pipeline(
|
150 |
task="automatic-speech-recognition",
|
151 |
model=MODEL_NAME,
|
|
|
157 |
|
158 |
embedding_model = PretrainedSpeakerEmbedding(
|
159 |
"speechbrain/spkrec-ecapa-voxceleb",
|
160 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
|
161 |
+
)
|
162 |
|
163 |
|
|
|
164 |
# def transcribe(microphone, file_upload):
|
165 |
# warn_output = ""
|
166 |
# if (microphone is not None) and (file_upload is not None):
|
|
|
179 |
# return warn_output + text
|
180 |
|
181 |
|
|
|
182 |
# def _return_yt_html_embed(yt_url):
|
183 |
# video_id = yt_url.split("?v=")[-1]
|
184 |
# HTML_str = (
|
|
|
188 |
# return HTML_str
|
189 |
|
190 |
|
|
|
191 |
# def yt_transcribe(yt_url):
|
192 |
# # yt = YouTube(yt_url)
|
193 |
# # html_embed_str = _return_yt_html_embed(yt_url)
|
|
|
211 |
# return html_embed_str, text
|
212 |
|
213 |
|
|
|
214 |
def convert_time(secs):
|
215 |
return datetime.timedelta(seconds=round(secs))
|
216 |
|
217 |
|
|
|
218 |
# def get_youtube(video_url):
|
219 |
# # yt = YouTube(video_url)
|
220 |
# # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
|
|
232 |
# print(abs_video_path)
|
233 |
# return abs_video_path
|
234 |
|
235 |
+
|
236 |
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
|
237 |
"""
|
238 |
# Transcribe youtube link using OpenAI Whisper
|
|
|
344 |
|
345 |
time_end = time.time()
|
346 |
time_diff = time_end - time_start
|
347 |
+
# memory = psutil.virtual_memory()
|
348 |
+
# gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
349 |
+
# gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
|
350 |
+
# gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
|
351 |
+
# system_info = f"""
|
352 |
+
# *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
|
353 |
+
# *Processing time: {time_diff:.5} seconds.*
|
354 |
+
# *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
|
355 |
+
# """
|
356 |
save_path = "output/transcript_result.csv"
|
357 |
df_results = pd.DataFrame(objects)
|
358 |
df_results.to_csv(save_path)
|
359 |
+
# return df_results, system_info, save_path
|
360 |
+
return df_results, save_path
|
361 |
|
362 |
except Exception as e:
|
363 |
raise RuntimeError("Error Running inference with local model", e)
|
364 |
|
365 |
|
366 |
+
def create_meeting_summary(openai_key, prompt, uploaded_audio, max_transcribe_seconds):
|
367 |
+
openai.api_key = openai_key
|
368 |
+
|
369 |
+
# 音声ファイルを開く
|
370 |
+
audio = AudioSegment.from_file(uploaded_audio)
|
371 |
+
|
372 |
+
# 文字起こしする音声データの上限を設定する
|
373 |
+
if len(audio) > int(max_transcribe_seconds) * 1000:
|
374 |
+
audio = audio[:int(max_transcribe_seconds) * 1000]
|
375 |
+
|
376 |
+
# ファイルサイズを削減するために音声ファイルを圧縮する
|
377 |
+
compressed_audio = audio.set_frame_rate(16000).set_channels(1)
|
378 |
+
|
379 |
+
# 圧縮した音声ファイルをmp3形式で一時ファイルに保存する
|
380 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp3") as tmp:
|
381 |
+
compressed_audio.export(tmp.name, format="mp3")
|
382 |
+
|
383 |
+
transcript = openai.Audio.transcribe("whisper-1", open(tmp.name, "rb"), response_format="verbose_json")
|
384 |
+
transcript_text = ""
|
385 |
+
for segment in transcript.segments:
|
386 |
+
transcript_text += f"{segment['text']}\n"
|
387 |
+
|
388 |
+
system_template = prompt
|
389 |
+
|
390 |
+
completion = openai.ChatCompletion.create(
|
391 |
+
model="gpt-3.5-turbo",
|
392 |
+
messages=[
|
393 |
+
{"role": "system", "content": system_template},
|
394 |
+
{"role": "user", "content": transcript_text}
|
395 |
+
]
|
396 |
+
)
|
397 |
+
summary = completion.choices[0].message.content
|
398 |
+
return summary, transcript_text
|
399 |
+
|
400 |
+
|
401 |
# ---- Gradio Layout -----
|
|
|
402 |
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
403 |
+
# youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
404 |
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
405 |
+
# memory = psutil.virtual_memory()
|
406 |
+
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja", label="Spoken language in video", interactive=True)
|
407 |
+
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
408 |
+
number_speakers = gr.Number(precision=0, value=0, label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers", interactive=True)
|
409 |
+
# system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
|
|
|
|
|
|
|
|
|
|
|
410 |
download_transcript = gr.File(label="Download transcript")
|
411 |
+
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
412 |
+
# title = "Whisper speaker diarization"
|
413 |
+
# demo = gr.Blocks(title=title)
|
414 |
+
# demo.encrypt = False
|
415 |
+
|
416 |
+
|
417 |
+
inputs = [
|
418 |
+
gr.Textbox(lines=1, label="openai_key", type="password"),
|
419 |
+
gr.TextArea(label="summary prompt", value="""会議の文字起こしが渡されます。
|
420 |
+
|
421 |
+
この会議のサマリーをMarkdown形式で作成してください。サマリーは、以下のような形式で書いてください。
|
422 |
+
- 会議の目的
|
423 |
+
- 会議の内容
|
424 |
+
- 会議の結果
|
425 |
+
"""),
|
426 |
+
# gr.Audio(type="filepath", label="音声ファイルをアップロード"),
|
427 |
+
video_in.render(),
|
428 |
+
gr.Textbox(lines=1, label="maximum transcription time (seconds)", type="text"),
|
429 |
+
selected_source_lang.render(),
|
430 |
+
selected_whisper_model.render(),
|
431 |
+
number_speakers.render(),
|
432 |
+
]
|
433 |
+
|
434 |
+
outputs = [
|
435 |
+
gr.Textbox(label="会議サマリー"),
|
436 |
+
gr.Textbox(label="文字起こし")
|
437 |
+
]
|
438 |
+
|
439 |
+
app = gr.Interface(
|
440 |
+
fn=create_meeting_summary,
|
441 |
+
inputs=inputs,
|
442 |
+
outputs=outputs,
|
443 |
+
title="会議サマリー生成アプリ",
|
444 |
+
description="音声ファイルをアップロードして、会議のサマリーをMarkdown形式で作成します。"
|
445 |
+
)
|
446 |
+
|
447 |
+
transcribe_btn = gr.Button("Transcribe audio and diarization")
|
448 |
+
transcribe_btn.click(speech_to_text,
|
449 |
+
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
450 |
+
[transcription_df, download_transcript]
|
451 |
+
)
|
452 |
+
|
453 |
+
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|