Spaces:
Build error
Build error
yama
commited on
Commit
·
8e28b8d
1
Parent(s):
fe81c29
Update app.py
Browse files
app.py
CHANGED
@@ -30,104 +30,104 @@ import psutil
|
|
30 |
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
31 |
source_languages = {
|
32 |
"en": "English",
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
"ja": "Japanese",
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
}
|
132 |
|
133 |
source_language_list = [key[0] for key in source_languages.items()]
|
@@ -357,7 +357,7 @@ video_in = gr.Video(label="Video file", mirror_webcam=False)
|
|
357 |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
358 |
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
359 |
memory = psutil.virtual_memory()
|
360 |
-
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="
|
361 |
label="Spoken language in video", interactive=True)
|
362 |
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
|
363 |
interactive=True)
|
@@ -374,67 +374,107 @@ demo = gr.Blocks(title=title)
|
|
374 |
demo.encrypt = False
|
375 |
|
376 |
with demo:
|
377 |
-
|
378 |
-
# <div>
|
379 |
-
# <h1 style='text-align: center'>Whisper speaker diarization</h1>
|
380 |
-
# This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
|
381 |
-
# and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
|
382 |
-
# </div>
|
383 |
-
# ''')
|
384 |
-
#
|
385 |
-
# with gr.Row():
|
386 |
-
# gr.Markdown('''
|
387 |
-
# ### Transcribe youtube link using OpenAI Whisper
|
388 |
-
# ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
389 |
-
# ##### 2. Generating speaker embeddings for each segments.
|
390 |
-
# ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
391 |
-
# ''')
|
392 |
-
|
393 |
-
with gr.Row():
|
394 |
gr.Markdown('''
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
''')
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
label="Examples", inputs=[youtube_url_in])
|
402 |
-
|
403 |
-
with gr.Row():
|
404 |
-
with gr.Column():
|
405 |
-
youtube_url_in.render()
|
406 |
-
download_youtube_btn = gr.Button("Download Youtube video")
|
407 |
-
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in])
|
408 |
-
print(video_in)
|
409 |
-
|
410 |
-
with gr.Row():
|
411 |
-
with gr.Column():
|
412 |
-
video_in.render()
|
413 |
-
with gr.Column():
|
414 |
-
gr.Markdown('''
|
415 |
-
##### Here you can start the transcription process.
|
416 |
-
##### Please select the source language for transcription.
|
417 |
-
##### You can select a range of assumed numbers of speakers.
|
418 |
''')
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
425 |
-
[transcription_df, system_info, download_transcript]
|
426 |
-
)
|
427 |
-
|
428 |
-
with gr.Row():
|
429 |
-
gr.Markdown('''
|
430 |
-
##### Here you will get transcription output
|
431 |
-
##### ''')
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
demo.launch(debug=True)
|
|
|
30 |
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
31 |
source_languages = {
|
32 |
"en": "English",
|
33 |
+
"zh": "Chinese",
|
34 |
+
"de": "German",
|
35 |
+
"es": "Spanish",
|
36 |
+
"ru": "Russian",
|
37 |
+
"ko": "Korean",
|
38 |
+
"fr": "French",
|
39 |
"ja": "Japanese",
|
40 |
+
"pt": "Portuguese",
|
41 |
+
"tr": "Turkish",
|
42 |
+
"pl": "Polish",
|
43 |
+
"ca": "Catalan",
|
44 |
+
"nl": "Dutch",
|
45 |
+
"ar": "Arabic",
|
46 |
+
"sv": "Swedish",
|
47 |
+
"it": "Italian",
|
48 |
+
"id": "Indonesian",
|
49 |
+
"hi": "Hindi",
|
50 |
+
"fi": "Finnish",
|
51 |
+
"vi": "Vietnamese",
|
52 |
+
"he": "Hebrew",
|
53 |
+
"uk": "Ukrainian",
|
54 |
+
"el": "Greek",
|
55 |
+
"ms": "Malay",
|
56 |
+
"cs": "Czech",
|
57 |
+
"ro": "Romanian",
|
58 |
+
"da": "Danish",
|
59 |
+
"hu": "Hungarian",
|
60 |
+
"ta": "Tamil",
|
61 |
+
"no": "Norwegian",
|
62 |
+
"th": "Thai",
|
63 |
+
"ur": "Urdu",
|
64 |
+
"hr": "Croatian",
|
65 |
+
"bg": "Bulgarian",
|
66 |
+
"lt": "Lithuanian",
|
67 |
+
"la": "Latin",
|
68 |
+
"mi": "Maori",
|
69 |
+
"ml": "Malayalam",
|
70 |
+
"cy": "Welsh",
|
71 |
+
"sk": "Slovak",
|
72 |
+
"te": "Telugu",
|
73 |
+
"fa": "Persian",
|
74 |
+
"lv": "Latvian",
|
75 |
+
"bn": "Bengali",
|
76 |
+
"sr": "Serbian",
|
77 |
+
"az": "Azerbaijani",
|
78 |
+
"sl": "Slovenian",
|
79 |
+
"kn": "Kannada",
|
80 |
+
"et": "Estonian",
|
81 |
+
"mk": "Macedonian",
|
82 |
+
"br": "Breton",
|
83 |
+
"eu": "Basque",
|
84 |
+
"is": "Icelandic",
|
85 |
+
"hy": "Armenian",
|
86 |
+
"ne": "Nepali",
|
87 |
+
"mn": "Mongolian",
|
88 |
+
"bs": "Bosnian",
|
89 |
+
"kk": "Kazakh",
|
90 |
+
"sq": "Albanian",
|
91 |
+
"sw": "Swahili",
|
92 |
+
"gl": "Galician",
|
93 |
+
"mr": "Marathi",
|
94 |
+
"pa": "Punjabi",
|
95 |
+
"si": "Sinhala",
|
96 |
+
"km": "Khmer",
|
97 |
+
"sn": "Shona",
|
98 |
+
"yo": "Yoruba",
|
99 |
+
"so": "Somali",
|
100 |
+
"af": "Afrikaans",
|
101 |
+
"oc": "Occitan",
|
102 |
+
"ka": "Georgian",
|
103 |
+
"be": "Belarusian",
|
104 |
+
"tg": "Tajik",
|
105 |
+
"sd": "Sindhi",
|
106 |
+
"gu": "Gujarati",
|
107 |
+
"am": "Amharic",
|
108 |
+
"yi": "Yiddish",
|
109 |
+
"lo": "Lao",
|
110 |
+
"uz": "Uzbek",
|
111 |
+
"fo": "Faroese",
|
112 |
+
"ht": "Haitian creole",
|
113 |
+
"ps": "Pashto",
|
114 |
+
"tk": "Turkmen",
|
115 |
+
"nn": "Nynorsk",
|
116 |
+
"mt": "Maltese",
|
117 |
+
"sa": "Sanskrit",
|
118 |
+
"lb": "Luxembourgish",
|
119 |
+
"my": "Myanmar",
|
120 |
+
"bo": "Tibetan",
|
121 |
+
"tl": "Tagalog",
|
122 |
+
"mg": "Malagasy",
|
123 |
+
"as": "Assamese",
|
124 |
+
"tt": "Tatar",
|
125 |
+
"haw": "Hawaiian",
|
126 |
+
"ln": "Lingala",
|
127 |
+
"ha": "Hausa",
|
128 |
+
"ba": "Bashkir",
|
129 |
+
"jw": "Javanese",
|
130 |
+
"su": "Sundanese",
|
131 |
}
|
132 |
|
133 |
source_language_list = [key[0] for key in source_languages.items()]
|
|
|
357 |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
358 |
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
359 |
memory = psutil.virtual_memory()
|
360 |
+
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en",
|
361 |
label="Spoken language in video", interactive=True)
|
362 |
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
|
363 |
interactive=True)
|
|
|
374 |
demo.encrypt = False
|
375 |
|
376 |
with demo:
|
377 |
+
with gr.Tab("Whisper speaker diarization"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
gr.Markdown('''
|
379 |
+
<div>
|
380 |
+
<h1 style='text-align: center'>Whisper speaker diarization</h1>
|
381 |
+
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
|
382 |
+
and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
|
383 |
+
</div>
|
384 |
+
''')
|
385 |
+
|
386 |
+
with gr.Row():
|
387 |
+
gr.Markdown('''
|
388 |
+
### Transcribe youtube link using OpenAI Whisper
|
389 |
+
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
390 |
+
##### 2. Generating speaker embeddings for each segments.
|
391 |
+
##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
392 |
''')
|
393 |
+
|
394 |
+
with gr.Row():
|
395 |
+
gr.Markdown('''
|
396 |
+
### You can test by following examples:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
''')
|
398 |
+
examples = gr.Examples(examples=
|
399 |
+
["https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
|
400 |
+
"https://www.youtube.com/watch?v=-UX0X45sYe4",
|
401 |
+
"https://www.youtube.com/watch?v=7minSgqi-Gw"],
|
402 |
+
label="Examples", inputs=[youtube_url_in])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
+
with gr.Row():
|
405 |
+
with gr.Column():
|
406 |
+
youtube_url_in.render()
|
407 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
408 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
409 |
+
video_in])
|
410 |
+
print(video_in)
|
411 |
|
412 |
+
with gr.Row():
|
413 |
+
with gr.Column():
|
414 |
+
video_in.render()
|
415 |
+
with gr.Column():
|
416 |
+
gr.Markdown('''
|
417 |
+
##### Here you can start the transcription process.
|
418 |
+
##### Please select the source language for transcription.
|
419 |
+
##### You can select a range of assumed numbers of speakers.
|
420 |
+
''')
|
421 |
+
selected_source_lang.render()
|
422 |
+
selected_whisper_model.render()
|
423 |
+
number_speakers.render()
|
424 |
+
transcribe_btn = gr.Button("Transcribe audio and diarization")
|
425 |
+
transcribe_btn.click(speech_to_text,
|
426 |
+
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
427 |
+
[transcription_df, system_info, download_transcript]
|
428 |
+
)
|
429 |
+
|
430 |
+
with gr.Row():
|
431 |
+
gr.Markdown('''
|
432 |
+
##### Here you will get transcription output
|
433 |
+
##### ''')
|
434 |
+
|
435 |
+
with gr.Row():
|
436 |
+
with gr.Column():
|
437 |
+
download_transcript.render()
|
438 |
+
transcription_df.render()
|
439 |
+
system_info.render()
|
440 |
+
gr.Markdown(
|
441 |
+
'''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
|
442 |
+
|
443 |
+
with gr.Tab("Whisper Transcribe Japanese Audio"):
|
444 |
+
gr.Markdown(f'''
|
445 |
+
<div>
|
446 |
+
<h1 style='text-align: center'>Whisper Transcribe Japanese Audio</h1>
|
447 |
+
</div>
|
448 |
+
Transcribe long-form microphone or audio inputs with the click of a button! The fine-tuned
|
449 |
+
checkpoint <a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
450 |
+
''')
|
451 |
+
microphone = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
|
452 |
+
upload = gr.inputs.Audio(source="upload", type="filepath", optional=True)
|
453 |
+
transcribe_btn = gr.Button("Transcribe Audio")
|
454 |
+
text_output = gr.Textbox()
|
455 |
+
with gr.Row():
|
456 |
+
gr.Markdown('''
|
457 |
+
### You can test by following examples:
|
458 |
+
''')
|
459 |
+
examples = gr.Examples(examples=
|
460 |
+
["sample1.wav",
|
461 |
+
"sample2.wav",
|
462 |
+
],
|
463 |
+
label="Examples", inputs=[upload])
|
464 |
+
transcribe_btn.click(transcribe, [microphone, upload], outputs=text_output)
|
465 |
+
|
466 |
+
with gr.Tab("Whisper Transcribe Japanese YouTube"):
|
467 |
+
gr.Markdown(f'''
|
468 |
+
<div>
|
469 |
+
<h1 style='text-align: center'>Whisper Transcribe Japanese YouTube</h1>
|
470 |
+
</div>
|
471 |
+
Transcribe long-form YouTube videos with the click of a button! The fine-tuned checkpoint:
|
472 |
+
<a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
473 |
+
''')
|
474 |
+
youtube_link = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
475 |
+
yt_transcribe_btn = gr.Button("Transcribe YouTube")
|
476 |
+
text_output2 = gr.Textbox()
|
477 |
+
html_output = gr.Markdown()
|
478 |
+
yt_transcribe_btn.click(yt_transcribe, [youtube_link], outputs=[html_output, text_output2])
|
479 |
|
480 |
demo.launch(debug=True)
|