yama commited on
Commit
b2d6296
·
1 Parent(s): 14e358d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -366
app.py CHANGED
@@ -1,381 +1,69 @@
1
- # import whisper
2
- from faster_whisper import WhisperModel
3
- import datetime
4
- import subprocess
5
  import gradio as gr
6
- from pathlib import Path
7
- import pandas as pd
8
- import re
9
- import time
10
- import os
11
- import numpy as np
12
- from sklearn.cluster import AgglomerativeClustering
13
- from sklearn.metrics import silhouette_score
14
-
15
- from pytube import YouTube
16
- import yt_dlp
17
- import torch
18
- import pyannote.audio
19
- from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
20
- from pyannote.audio import Audio
21
- from pyannote.core import Segment
22
-
23
- from gpuinfo import GPUInfo
24
-
25
- import wave
26
- import contextlib
27
- from transformers import pipeline
28
- import psutil
29
-
30
  import openai
31
  import os
 
32
  import tempfile
33
  from pydub import AudioSegment
 
34
 
 
 
35
 
36
- whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
37
- source_languages = {
38
- "en": "English",
39
- "ja": "Japanese",
40
- }
41
-
42
- source_language_list = [key[0] for key in source_languages.items()]
43
-
44
- MODEL_NAME = "vumichien/whisper-medium-jp"
45
- lang = "ja"
46
 
47
- device = 0 if torch.cuda.is_available() else "cpu"
48
- pipe = pipeline(
49
- task="automatic-speech-recognition",
50
- model=MODEL_NAME,
51
- chunk_length_s=30,
52
- device=device,
53
- )
54
- os.makedirs('output', exist_ok=True)
55
- pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
56
-
57
- embedding_model = PretrainedSpeakerEmbedding(
58
- "speechbrain/spkrec-ecapa-voxceleb",
59
- device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
60
-
61
-
62
- def transcribe(microphone, file_upload):
63
- warn_output = ""
64
- if (microphone is not None) and (file_upload is not None):
65
- warn_output = (
66
- "WARNING: You've uploaded an audio file and used the microphone. "
67
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
68
- )
69
 
70
- elif (microphone is None) and (file_upload is None):
71
- return "ERROR: You have to either use the microphone or upload an audio file"
72
 
73
- file = microphone if microphone is not None else file_upload
 
 
74
 
75
- text = pipe(file)["text"]
 
 
 
76
 
77
- return warn_output + text
78
 
79
-
80
- def _return_yt_html_embed(yt_url):
81
- video_id = yt_url.split("?v=")[-1]
82
- HTML_str = (
83
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
84
- " </center>"
85
  )
86
- return HTML_str
87
-
88
-
89
- def yt_transcribe(yt_url):
90
- # yt = YouTube(yt_url)
91
- # html_embed_str = _return_yt_html_embed(yt_url)
92
- # stream = yt.streams.filter(only_audio=True)[0]
93
- # stream.download(filename="audio.mp3")
94
-
95
- ydl_opts = {
96
- 'format': 'bestvideo*+bestaudio/best',
97
- 'postprocessors': [{
98
- 'key': 'FFmpegExtractAudio',
99
- 'preferredcodec': 'mp3',
100
- 'preferredquality': '192',
101
- }],
102
- 'outtmpl': 'audio.%(ext)s',
103
- }
104
-
105
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
106
- ydl.download([yt_url])
107
-
108
- text = pipe("audio.mp3")["text"]
109
- return html_embed_str, text
110
-
111
-
112
- def convert_time(secs):
113
- return datetime.timedelta(seconds=round(secs))
114
-
115
-
116
- def get_youtube(video_url):
117
- # yt = YouTube(video_url)
118
- # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
119
-
120
- ydl_opts = {
121
- 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
122
- }
123
-
124
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
125
- info = ydl.extract_info(video_url, download=False)
126
- abs_video_path = ydl.prepare_filename(info)
127
- ydl.process_info(info)
128
-
129
- print("Success download video")
130
- print(abs_video_path)
131
- return abs_video_path
132
-
133
-
134
- def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
135
- """
136
- # Transcribe youtube link using OpenAI Whisper
137
- 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
138
- 2. Generating speaker embeddings for each segments.
139
- 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
140
-
141
- Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
142
- Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
143
- """
144
-
145
- # model = whisper.load_model(whisper_model)
146
- # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
147
- model = WhisperModel(whisper_model, compute_type="int8")
148
- time_start = time.time()
149
- if (video_file_path == None):
150
- raise ValueError("Error no video input")
151
- print(video_file_path)
152
-
153
- try:
154
- # Read and convert youtube video
155
- _, file_ending = os.path.splitext(f'{video_file_path}')
156
- print(f'file enging is {file_ending}')
157
- audio_file = video_file_path.replace(file_ending, ".wav")
158
- print("starting conversion to wav")
159
- os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
160
-
161
- # Get duration
162
- with contextlib.closing(wave.open(audio_file, 'r')) as f:
163
- frames = f.getnframes()
164
- rate = f.getframerate()
165
- duration = frames / float(rate)
166
- print(f"conversion to wav ready, duration of audio file: {duration}")
167
-
168
- # Transcribe audio
169
- options = dict(language=selected_source_lang, beam_size=5, best_of=5)
170
- transcribe_options = dict(task="transcribe", **options)
171
- segments_raw, info = model.transcribe(audio_file, **transcribe_options)
172
-
173
- # Convert back to original openai format
174
- segments = []
175
- i = 0
176
- for segment_chunk in segments_raw:
177
- chunk = {}
178
- chunk["start"] = segment_chunk.start
179
- chunk["end"] = segment_chunk.end
180
- chunk["text"] = segment_chunk.text
181
- segments.append(chunk)
182
- i += 1
183
- print("transcribe audio done with fast whisper")
184
- except Exception as e:
185
- raise RuntimeError("Error converting video to audio")
186
-
187
- try:
188
- # Create embedding
189
- def segment_embedding(segment):
190
- audio = Audio()
191
- start = segment["start"]
192
- # Whisper overshoots the end timestamp in the last segment
193
- end = min(duration, segment["end"])
194
- clip = Segment(start, end)
195
- waveform, sample_rate = audio.crop(audio_file, clip)
196
- return embedding_model(waveform[None])
197
-
198
- embeddings = np.zeros(shape=(len(segments), 192))
199
- for i, segment in enumerate(segments):
200
- embeddings[i] = segment_embedding(segment)
201
- embeddings = np.nan_to_num(embeddings)
202
- print(f'Embedding shape: {embeddings.shape}')
203
-
204
- if num_speakers == 0:
205
- # Find the best number of speakers
206
- score_num_speakers = {}
207
-
208
- for num_speakers in range(2, 10 + 1):
209
- clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
210
- score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
211
- score_num_speakers[num_speakers] = score
212
- best_num_speaker = max(score_num_speakers, key=lambda x: score_num_speakers[x])
213
- print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
214
- else:
215
- best_num_speaker = num_speakers
216
-
217
- # Assign speaker label
218
- clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
219
- labels = clustering.labels_
220
- for i in range(len(segments)):
221
- segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
222
-
223
- # Make output
224
- objects = {
225
- 'Start': [],
226
- 'End': [],
227
- 'Speaker': [],
228
- 'Text': []
229
- }
230
- text = ''
231
- for (i, segment) in enumerate(segments):
232
- if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
233
- objects['Start'].append(str(convert_time(segment["start"])))
234
- objects['Speaker'].append(segment["speaker"])
235
- if i != 0:
236
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
237
- objects['Text'].append(text)
238
- text = ''
239
- text += segment["text"] + ' '
240
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
241
- objects['Text'].append(text)
242
-
243
- time_end = time.time()
244
- time_diff = time_end - time_start
245
- memory = psutil.virtual_memory()
246
- gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
247
- gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
248
- gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
249
- system_info = f"""
250
- *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
251
- *Processing time: {time_diff:.5} seconds.*
252
- *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
253
- """
254
- save_path = "output/transcript_result.csv"
255
- df_results = pd.DataFrame(objects)
256
- df_results.to_csv(save_path)
257
- return df_results, system_info, save_path
258
-
259
- except Exception as e:
260
- raise RuntimeError("Error Running inference with local model", e)
261
-
262
-
263
- # def create_meeting_summary(openai_key, prompt):
264
- # openai.api_key = openai_key
265
- #
266
- # # 文字起こししたテキストを取得
267
- # system_template = prompt
268
- #
269
- # completion = openai.ChatCompletion.create(
270
- # model="gpt-3.5-turbo",
271
- # messages=[
272
- # {"role": "system", "content": system_template},
273
- # {"role": "user", "content": transcript_text}
274
- # ]
275
- # )
276
- # summary = completion.choices[0].message.content
277
- # return summary
278
-
279
-
280
- # ---- Gradio Layout -----
281
- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
282
- video_in = gr.Video(label="Video file", mirror_webcam=False)
283
- youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
284
- df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
285
- memory = psutil.virtual_memory()
286
- selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja",
287
- label="Spoken language in video", interactive=True)
288
- selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
289
- interactive=True)
290
- number_speakers = gr.Number(precision=0, value=0,
291
- label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
292
- interactive=True)
293
- system_info = gr.Markdown(
294
- f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
295
- download_transcript = gr.File(label="Download transcript")
296
- transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(0, "dynamic"), max_rows=10,
297
- wrap=True, overflow_row_behaviour='paginate')
298
- title = "Whisper speaker diarization"
299
- demo = gr.Blocks(title=title)
300
- demo.encrypt = False
301
-
302
- with demo:
303
- with gr.Tab("Whisper speaker diarization"):
304
- gr.Markdown('''
305
- <div>
306
- <h1 style='text-align: center'>Whisper speaker diarization</h1>
307
- This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
308
- and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
309
- </div>
310
- ''')
311
-
312
- with gr.Row():
313
- gr.Markdown('''
314
- ### Transcribe youtube link using OpenAI Whisper
315
- ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
316
- ##### 2. Generating speaker embeddings for each segments.
317
- ##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
318
- ''')
319
-
320
- with gr.Row():
321
- gr.Markdown('''
322
- ### You can test by following examples:
323
- ''')
324
- examples = gr.Examples(examples=
325
- ["https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
326
- "https://www.youtube.com/watch?v=-UX0X45sYe4",
327
- "https://www.youtube.com/watch?v=7minSgqi-Gw"],
328
- label="Examples", inputs=[youtube_url_in])
329
-
330
- with gr.Row():
331
- with gr.Column():
332
- youtube_url_in.render()
333
- download_youtube_btn = gr.Button("Download Youtube video")
334
- download_youtube_btn.click(get_youtube, [youtube_url_in], [
335
- video_in])
336
- print(video_in)
337
-
338
- with gr.Row():
339
- with gr.Column():
340
- video_in.render()
341
- with gr.Column():
342
- gr.Markdown('''
343
- ##### Here you can start the transcription process.
344
- ##### Please select the source language for transcription.
345
- ##### You can select a range of assumed numbers of speakers.
346
- ''')
347
- selected_source_lang.render()
348
- selected_whisper_model.render()
349
- number_speakers.render()
350
- transcribe_btn = gr.Button("Transcribe audio and diarization")
351
- transcribe_btn.click(speech_to_text,
352
- [video_in, selected_source_lang, selected_whisper_model, number_speakers],
353
- [transcription_df, system_info, download_transcript]
354
- )
355
-
356
- with gr.Row():
357
- gr.Markdown('''
358
- ##### Here you will get transcription output
359
- ##### ''')
360
-
361
- with gr.Row():
362
- with gr.Column():
363
- download_transcript.render()
364
- transcription_df.render()
365
- # system_info.render()
366
- # gr.Markdown(
367
- # '''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
368
-
369
- # with gr.Row():
370
- # with gr.Column():
371
- # gr.Textbox(lines=1, label="openai_key", type="password")
372
- # gr.TextArea(label="prompt", value="""会議の文字起こしが渡されます。
373
- #
374
- # この会議のサマリーをMarkdown形式で作成してください。サマリーは、以下のような形式で書いてください。
375
- # - 会議の目的
376
- # - 会議の内容
377
- # - 会議の結果""")
378
- # gr.Textbox(label="transcription_summary")
379
-
380
 
381
- demo.launch(debug=True)
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import openai
3
  import os
4
+ from io import BytesIO
5
  import tempfile
6
  from pydub import AudioSegment
7
+ import shutil
8
 
9
+ def create_meeting_summary(openai_key, prompt, uploaded_audio, max_transcribe_seconds):
10
+ openai.api_key = openai_key
11
 
12
+ # 音声ファイルを開く
13
+ audio = AudioSegment.from_file(uploaded_audio)
 
 
 
 
 
 
 
 
14
 
15
+ # 文字起こしする音声データの上限を設定する
16
+ if len(audio) > int(max_transcribe_seconds) * 1000:
17
+ audio = audio[:int(max_transcribe_seconds) * 1000]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ # ファイルサイズを削減するために音声ファイルを圧縮する
20
+ compressed_audio = audio.set_frame_rate(16000).set_channels(1)
21
 
22
+ # 圧縮した音声ファイルをmp3形式で一時ファイルに保存する
23
+ with tempfile.NamedTemporaryFile(delete=True, suffix=".mp3") as tmp:
24
+ compressed_audio.export(tmp.name, format="mp3")
25
 
26
+ transcript = openai.Audio.transcribe("whisper-1", open(tmp.name, "rb"), response_format="verbose_json")
27
+ transcript_text = ""
28
+ for segment in transcript.segments:
29
+ transcript_text += f"{segment['text']}\n"
30
 
31
+ system_template = prompt
32
 
33
+ completion = openai.ChatCompletion.create(
34
+ model="gpt-3.5-turbo",
35
+ messages=[
36
+ {"role": "system", "content": system_template},
37
+ {"role": "user", "content": transcript_text}
38
+ ]
39
  )
40
+ summary = completion.choices[0].message.content
41
+ return summary, transcript_text
42
+
43
+
44
+ inputs = [
45
+ gr.Textbox(lines=1, label="openai_key", type="password"),
46
+ gr.TextArea(label="プロンプト", value="""会議の文字起こしが渡されます。
47
+
48
+ この会議のサマリーをMarkdown形式で作成してください。サマリーは、以下のような形式で書いてください。
49
+ - 会議の目的
50
+ - 会議の内容
51
+ - 会議の結果"""),
52
+ gr.Audio(type="filepath", label="音声ファイルをアップロード"),
53
+ gr.Textbox(lines=1, label="最大文字起こし時間(秒)", type="text"),
54
+ ]
55
+
56
+ outputs = [
57
+ gr.Textbox(label="会議サマリー"),
58
+ gr.Textbox(label="文字起こし")
59
+ ]
60
+
61
+ app = gr.Interface(
62
+ fn=create_meeting_summary,
63
+ inputs=inputs,
64
+ outputs=outputs,
65
+ title="会議サマリー生成アプリ",
66
+ description="音声ファイルをアップロードして、会議のサマリーをMarkdown形式で作成します。"
67
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ app.launch(debug=True)