File size: 6,221 Bytes
25b3ee2
 
 
 
 
5c627ea
 
1226900
25b3ee2
 
 
 
5c627ea
25b3ee2
 
ae0984e
25b3ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec5ad1
25b3ee2
 
5c627ea
25b3ee2
 
 
 
d55f05b
25b3ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9775ab7
 
ed782b1
25b3ee2
 
 
 
 
 
aa0c9ba
911aa47
25b3ee2
 
 
45a29a7
25b3ee2
b43ab6b
45a29a7
5c627ea
1d829e9
fdef023
 
 
 
 
25b3ee2
8d31f0f
25b3ee2
 
 
fdef023
776bc06
b43ab6b
1d829e9
25b3ee2
 
 
e8ad5ad
25b3ee2
 
ddbc427
815b24c
25b3ee2
 
 
 
 
cce655b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b3ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
a71e7ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datetime import datetime
import pytz

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    get_INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    INTRODUCE_BENCHMARK
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_open_model_eval



def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
# load the evaluation requests and results locally
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)



(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)



def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    dataframe.insert(0, '', range(1, len(dataframe) + 1))
    return Leaderboard(
        value=dataframe,
        datatype=[int]+[c.type for c in fields(AutoEvalColumn)],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=["Available on the hub"],
        filter_columns=[
            ColumnFilter(
                AutoEvalColumn.still_on_hub.name, type="boolean", label="πŸ”‘ Show Open Models Only", default=False
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False
    )






demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1):
            gr.HTML(INTRODUCE_BENCHMARK)  #TODO
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
        #     with gr.Column():
        #         with gr.Row():
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

        #         # with gr.Column():
        #         #     with gr.Accordion(
        #         #         f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
        #         #         open=False,
        #         #     ):
        #         #         with gr.Row():
        #         #             finished_eval_table = gr.components.Dataframe(
        #         #                 value=finished_eval_queue_df,
        #         #                 headers=EVAL_COLS,
        #         #                 datatype=EVAL_TYPES,
        #         #                 row_count=5,
        #         #             )
        #         #     with gr.Accordion(
        #         #         f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
        #         #         open=False,
        #         #     ):
        #         #         with gr.Row():
        #         #             running_eval_table = gr.components.Dataframe(
        #         #                 value=running_eval_queue_df,
        #         #                 headers=EVAL_COLS,
        #         #                 datatype=EVAL_TYPES,
        #         #                 row_count=5,
        #         #             )

        #         #     with gr.Accordion(
        #         #         f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
        #         #         open=False,
        #         #     ):
        #         #         with gr.Row():
        #         #             pending_eval_table = gr.components.Dataframe(
        #         #                 value=pending_eval_queue_df,
        #         #                 headers=EVAL_COLS,
        #         #                 datatype=EVAL_TYPES,
        #         #                 row_count=5,
        #         #             )
        #     with gr.Row():
        #         gr.Markdown("# βœ‰οΈβœ¨ Submit Open model here!", elem_classes="markdown-text")

        #     with gr.Row():
        #         with gr.Column():
        #             model_name = gr.Textbox(label="Model name")
        #     submit_button = gr.Button("Submit Eval")
        #     submission_result = gr.Markdown()
        #     submit_button.click(
        #         add_new_open_model_eval,
        #         [
        #             model_name
        #         ],
        #         submission_result,
        #     )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()