Spaces:
Running
Running
File size: 6,221 Bytes
25b3ee2 5c627ea 1226900 25b3ee2 5c627ea 25b3ee2 ae0984e 25b3ee2 1ec5ad1 25b3ee2 5c627ea 25b3ee2 d55f05b 25b3ee2 9775ab7 ed782b1 25b3ee2 aa0c9ba 911aa47 25b3ee2 45a29a7 25b3ee2 b43ab6b 45a29a7 5c627ea 1d829e9 fdef023 25b3ee2 8d31f0f 25b3ee2 fdef023 776bc06 b43ab6b 1d829e9 25b3ee2 e8ad5ad 25b3ee2 ddbc427 815b24c 25b3ee2 cce655b 25b3ee2 a71e7ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datetime import datetime
import pytz
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
get_INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
INTRODUCE_BENCHMARK
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_open_model_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
# load the evaluation requests and results locally
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
dataframe.insert(0, '', range(1, len(dataframe) + 1))
return Leaderboard(
value=dataframe,
datatype=[int]+[c.type for c in fields(AutoEvalColumn)],
search_columns=[AutoEvalColumn.model.name],
hide_columns=["Available on the hub"],
filter_columns=[
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="π Show Open Models Only", default=False
),
],
bool_checkboxgroup_label="Hide models",
interactive=False
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1):
gr.HTML(INTRODUCE_BENCHMARK) #TODO
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# # with gr.Column():
# # with gr.Accordion(
# # f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # finished_eval_table = gr.components.Dataframe(
# # value=finished_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# # with gr.Accordion(
# # f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # running_eval_table = gr.components.Dataframe(
# # value=running_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# # with gr.Accordion(
# # f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
# # open=False,
# # ):
# # with gr.Row():
# # pending_eval_table = gr.components.Dataframe(
# # value=pending_eval_queue_df,
# # headers=EVAL_COLS,
# # datatype=EVAL_TYPES,
# # row_count=5,
# # )
# with gr.Row():
# gr.Markdown("# βοΈβ¨ Submit Open model here!", elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name = gr.Textbox(label="Model name")
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# add_new_open_model_eval,
# [
# model_name
# ],
# submission_result,
# )
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |