import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from datetime import datetime import pytz from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, get_INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, INTRODUCE_BENCHMARK ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_open_model_eval def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation # load the evaluation requests and results locally try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) ( finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") dataframe.insert(0, '', range(1, len(dataframe) + 1)) return Leaderboard( value=dataframe, datatype=[int]+[c.type for c in fields(AutoEvalColumn)], search_columns=[AutoEvalColumn.model.name], hide_columns=["Available on the hub"], filter_columns=[ ColumnFilter( AutoEvalColumn.still_on_hub.name, type="boolean", label="🔑 Show Open Models Only", default=False ), ], bool_checkboxgroup_label="Hide models", interactive=False ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.HTML(get_INTRODUCTION_TEXT(LEADERBOARD_DF.shape[0] , datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S"), paper_link= "https://arxiv.org/abs/2503.12329"), elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=1): gr.HTML(INTRODUCE_BENCHMARK) #TODO leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") # with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): # with gr.Column(): # with gr.Row(): # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") # # with gr.Column(): # # with gr.Accordion( # # f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", # # open=False, # # ): # # with gr.Row(): # # finished_eval_table = gr.components.Dataframe( # # value=finished_eval_queue_df, # # headers=EVAL_COLS, # # datatype=EVAL_TYPES, # # row_count=5, # # ) # # with gr.Accordion( # # f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", # # open=False, # # ): # # with gr.Row(): # # running_eval_table = gr.components.Dataframe( # # value=running_eval_queue_df, # # headers=EVAL_COLS, # # datatype=EVAL_TYPES, # # row_count=5, # # ) # # with gr.Accordion( # # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", # # open=False, # # ): # # with gr.Row(): # # pending_eval_table = gr.components.Dataframe( # # value=pending_eval_queue_df, # # headers=EVAL_COLS, # # datatype=EVAL_TYPES, # # row_count=5, # # ) # with gr.Row(): # gr.Markdown("# ✉️✨ Submit Open model here!", elem_classes="markdown-text") # with gr.Row(): # with gr.Column(): # model_name = gr.Textbox(label="Model name") # submit_button = gr.Button("Submit Eval") # submission_result = gr.Markdown() # submit_button.click( # add_new_open_model_eval, # [ # model_name # ], # submission_result, # ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()