import cv2 import streamlit as st from face_detection import FaceDetector from mark_detection import MarkDetector from pose_estimation import PoseEstimator from utils import refine import tempfile def main(): # Streamlit Title and Sidebar for inputs st.title("Distraction Detection App on Hugging Face Spaces") st.sidebar.write("Please upload a video file for analysis.") # File uploader for video video_file = st.sidebar.file_uploader("Upload a Video File", type=["mp4", "avi", "mov"]) if video_file is not None: # Create a temporary file to store the uploaded video with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(video_file.read()) video_path = temp_file.name # Set up video capture and detectors cap = cv2.VideoCapture(video_path) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) face_detector = FaceDetector("assets/face_detector.onnx") mark_detector = MarkDetector("assets/face_landmarks.onnx") pose_estimator = PoseEstimator(frame_width, frame_height) # Streamlit placeholder for processed frames frame_placeholder = st.empty() while cap.isOpened(): # Capture each frame frame_got, frame = cap.read() if not frame_got: break # Face detection and pose estimation faces, _ = face_detector.detect(frame, 0.7) if len(faces) > 0: face = refine(faces, frame_width, frame_height, 0.15)[0] x1, y1, x2, y2 = face[:4].astype(int) patch = frame[y1:y2, x1:x2] marks = mark_detector.detect([patch])[0].reshape([68, 2]) marks *= (x2 - x1) marks[:, 0] += x1 marks[:, 1] += y1 distraction_status, pose_vectors = pose_estimator.detect_distraction(marks) status_text = "Distracted" if distraction_status else "Focused" # Overlay status text cv2.putText(frame, f"Status: {status_text}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0) if not distraction_status else (0, 0, 255)) # Display the processed frame frame_placeholder.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB") cap.release() else: st.warning("Please upload a video file to proceed.") if __name__ == "__main__": main()