import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

from huggingface_hub import login
import os
token = os.getenv("HF_TOKEN")
login(token=token)

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
        yield img, seed


#def create_flux_tab():
def create_flux_tab(image_input):
    examples = [
        "a tiny astronaut hatching from an egg on the moon",
        "a cat holding a sign that says hello world",
        "an anime illustration of a wiener schnitzel",
    ]

    css = """
    #col-container {
        margin: 0 auto;
        max-width: 520px;
    }
    """
    
    with gr.Blocks(css=css) as flux_demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""# FLUX.1 [dev]""")
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0)
            
            result = gr.Image(label="Result", show_label=False)

            with gr.Row():
                use_in_text2lipsync_button = gr.Button("Use this image in [Txt2LipSync] Tab")  # 새로운 버튼 추가
            
            with gr.Accordion("Advanced Settings", open=False):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=15,
                        step=0.1,
                        value=3.5,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=28,
                    )
            
            gr.Examples(
                examples=examples,
                fn=infer,
                inputs=[prompt],
                outputs=[result, seed],
                cache_examples="lazy"
            )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
            outputs=[result, seed]
        )
        # 새로운 버튼 클릭 이벤트 정의
        use_in_text2lipsync_button.click(
            fn=lambda img: img,  # 간단한 람다 함수를 사용하여 이미지를 그대로 전달
            inputs=[result],  # 생성된 이미지를 입력으로 사용
            outputs=[image_input]  # Text to LipSync 탭의 image_input을 업데이트
        )
    
    return flux_demo