Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,134 Bytes
c1bc1cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import argparse
import copy
import math
import random
from typing import Any
import pdb
import os
import time
from PIL import Image, ImageOps
import torch
from accelerate import Accelerator
from library.device_utils import clean_memory_on_device
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_models, flux_train_utils_recraft as flux_train_utils, flux_utils, sd3_train_utils, \
strategy_base, strategy_flux, train_util
from torchvision import transforms
import train_network
from library.utils import setup_logging
from diffusers.utils import load_image
import numpy as np
setup_logging()
import logging
logger = logging.getLogger(__name__)
def load_target_model(
fp8_base: bool,
pretrained_model_name_or_path: str,
disable_mmap_load_safetensors: bool,
clip_l_path: str,
fp8_base_unet: bool,
t5xxl_path: str,
ae_path: str,
weight_dtype: torch.dtype,
accelerator: Accelerator
):
# Determine the loading data type
loading_dtype = None if fp8_base else weight_dtype
# Load the main model to the accelerator's device
_, model = flux_utils.load_flow_model(
pretrained_model_name_or_path,
# loading_dtype,
torch.float8_e4m3fn,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
if fp8_base:
# Check dtype of the model
if model.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 FLUX model")
# Load the CLIP model to the accelerator's device
clip_l = flux_utils.load_clip_l(
clip_l_path,
weight_dtype,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
clip_l.eval()
# Determine the loading data type for T5XXL
if fp8_base and not fp8_base_unet:
loading_dtype_t5xxl = None # as is
else:
loading_dtype_t5xxl = weight_dtype
# Load the T5XXL model to the accelerator's device
t5xxl = flux_utils.load_t5xxl(
t5xxl_path,
loading_dtype_t5xxl,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
t5xxl.eval()
if fp8_base and not fp8_base_unet:
# Check dtype of the T5XXL model
if t5xxl.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
# Load the AE model to the accelerator's device
ae = flux_utils.load_ae(
ae_path,
weight_dtype,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
# # Wrap models with Accelerator for potential distributed setups
# model, clip_l, t5xxl, ae = accelerator.prepare(model, clip_l, t5xxl, ae)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
import torchvision.transforms as transforms
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
if width == height:
img = img.resize((self.size, self.size), Image.LANCZOS)
else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
def sample(args, accelerator, vae, text_encoder, flux, output_dir, sample_images, sample_prompts):
def encode_images_to_latents(vae, images):
# Get image dimensions
b, c, h, w = images.shape
num_split = 2 if args.frame_num == 4 else 3
# Split the image into three parts
img_parts = [images[:, :, :, i * w // num_split:(i + 1) * w // num_split] for i in range(num_split)]
# Encode each part
latents = [vae.encode(img) for img in img_parts]
# Concatenate latents in the latent space to reconstruct the full image
latents = torch.cat(latents, dim=-1)
return latents
def encode_images_to_latents2(vae, images):
latents = vae.encode(images)
return latents
# Directly use precomputed conditions
conditions = {}
with torch.no_grad():
for image_path, prompt_dict in zip(sample_images, sample_prompts):
prompt = prompt_dict.get("prompt", "")
if prompt not in conditions:
logger.info(f"Cache conditions for image: {image_path} with prompt: {prompt}")
resize_transform = ResizeWithPadding(size=512, fill=255) if args.frame_num == 4 else ResizeWithPadding(size=352, fill=255)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
# Load and preprocess image
image = img_transforms(np.array(load_image(image_path), dtype=np.uint8)).unsqueeze(0).to(
# accelerator.device, # Move image to CUDA
vae.device,
dtype=vae.dtype
)
latents = encode_images_to_latents2(vae, image)
# Log the shape of latents
logger.debug(f"Encoded latents shape for prompt '{prompt}': {latents.shape}")
# Store conditions on CUDA
# conditions[prompt] = latents[:,:,latents.shape[2]//2:latents.shape[2], :latents.shape[3]//2].to("cpu")
conditions[prompt] = latents.to("cpu")
sample_conditions = conditions
if sample_conditions is not None:
conditions = {k: v for k, v in sample_conditions.items()} # Already on CUDA
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
text_encoder[0].to(accelerator.device)
text_encoder[1].to(accelerator.device)
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
with accelerator.autocast(), torch.no_grad():
for prompt_dict in sample_prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"Cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoder, tokens_and_masks, True
)
logger.info(f"Generating image")
save_dir = output_dir
os.makedirs(save_dir, exist_ok=True)
with torch.no_grad(), accelerator.autocast():
for prompt_dict in sample_prompts:
sample_image_inference(
args,
accelerator,
flux,
text_encoder,
vae,
save_dir,
prompt_dict,
sample_prompts_te_outputs,
None,
conditions
)
clean_memory_on_device(accelerator.device)
def sample_image_inference(
args,
accelerator: Accelerator,
flux: flux_models.Flux,
text_encoder,
ae: flux_models.AutoEncoder,
save_dir,
prompt_dict,
sample_prompts_te_outputs,
prompt_replacement,
sample_images_ae_outputs
):
# Extract parameters from prompt_dict
sample_steps = prompt_dict.get("sample_steps", 20)
width = prompt_dict.get("width", 1024) if args.frame_num == 4 else prompt_dict.get("width", 1056)
height = prompt_dict.get("height", 1024) if args.frame_num == 4 else prompt_dict.get("height", 1056)
scale = prompt_dict.get("scale", 1.0)
seed = prompt_dict.get("seed")
prompt: str = prompt_dict.get("prompt", "")
if prompt_replacement is not None:
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
else:
# True random sample image generation
torch.seed()
torch.cuda.seed()
# Ensure height and width are divisible by 16
height = max(64, height - height % 16)
width = max(64, width - width % 16)
logger.info(f"prompt: {prompt}")
logger.info(f"height: {height}")
logger.info(f"width: {width}")
logger.info(f"sample_steps: {sample_steps}")
logger.info(f"scale: {scale}")
if seed is not None:
logger.info(f"seed: {seed}")
# Encode prompts
# Assuming that TokenizeStrategy and TextEncodingStrategy are compatible with Accelerator
text_encoder_conds = []
if sample_prompts_te_outputs and prompt in sample_prompts_te_outputs:
text_encoder_conds = sample_prompts_te_outputs[prompt]
logger.info(f"Using cached text encoder outputs for prompt: {prompt}")
if sample_images_ae_outputs and prompt in sample_images_ae_outputs:
ae_outputs = sample_images_ae_outputs[prompt]
else:
ae_outputs = None
# ae_outputs = torch.load('ae_outputs.pth', map_location='cuda:0')
# text_encoder_conds = torch.load('text_encoder_conds.pth', map_location='cuda:0')
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
# 打印调试信息
logger.debug(
f"l_pooled shape: {l_pooled.shape}, t5_out shape: {t5_out.shape}, txt_ids shape: {txt_ids.shape}, t5_attn_mask shape: {t5_attn_mask.shape}")
# 采样图像
weight_dtype = ae.dtype # TODO: give dtype as argument
packed_latent_height = height // 16
packed_latent_width = width // 16
# 打印调试信息
logger.debug(f"packed_latent_height: {packed_latent_height}, packed_latent_width: {packed_latent_width}")
# 准备噪声张量在 CUDA 上
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=accelerator.device,
dtype=weight_dtype,
generator=torch.Generator(device=accelerator.device).manual_seed(seed) if seed is not None else None,
)
timesteps = flux_train_utils.get_schedule(sample_steps, noise.shape[1], shift=True) # FLUX.1 dev -> shift=True
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(
accelerator.device, dtype=weight_dtype
)
t5_attn_mask = t5_attn_mask.to(accelerator.device)
clip_l, t5xxl = text_encoder
# ae.to("cpu")
clip_l.to("cpu")
t5xxl.to("cpu")
clean_memory_on_device(accelerator.device)
flux.to("cuda")
for param in flux.parameters():
param.requires_grad = False
# 执行去噪
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(args, flux, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps,
guidance=scale, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs)
# 打印x的形状
logger.debug(f"x shape after denoise: {x.shape}")
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
# 将潜在向量转换为图像
# clean_memory_on_device(accelerator.device)
ae.to(accelerator.device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
ae.to("cpu")
clean_memory_on_device(accelerator.device)
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
# 生成唯一的文件名
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
seed_suffix = "" if seed is None else f"_{seed}"
i: int = prompt_dict.get("enum", 0) # Ensure 'enum' exists
img_filename = f"{ts_str}{seed_suffix}_{i}.png" # Added 'i' to filename for uniqueness
image.save(os.path.join(save_dir, img_filename))
def setup_argparse():
parser = argparse.ArgumentParser(description="FLUX-Controlnet-Inpainting Inference Script")
# Paths
parser.add_argument('--base_flux_checkpoint', type=str, required=True,
help='Path to BASE_FLUX_CHECKPOINT')
parser.add_argument('--lora_weights_path', type=str, required=True,
help='Path to LORA_WEIGHTS_PATH')
parser.add_argument('--clip_l_path', type=str, required=True,
help='Path to CLIP_L_PATH')
parser.add_argument('--t5xxl_path', type=str, required=True,
help='Path to T5XXL_PATH')
parser.add_argument('--ae_path', type=str, required=True,
help='Path to AE_PATH')
parser.add_argument('--sample_images_file', type=str, required=True,
help='Path to SAMPLE_IMAGES_FILE')
parser.add_argument('--sample_prompts_file', type=str, required=True,
help='Path to SAMPLE_PROMPTS_FILE')
parser.add_argument('--output_dir', type=str, required=True,
help='Directory to save OUTPUT_DIR')
parser.add_argument('--frame_num', type=int, choices=[4, 9], required=True,
help="The number of steps in the generated step diagram (choose 4 or 9)")
return parser.parse_args()
def main(args):
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
BASE_FLUX_CHECKPOINT = args.base_flux_checkpoint
LORA_WEIGHTS_PATH = args.lora_weights_path
CLIP_L_PATH = args.clip_l_path
T5XXL_PATH = args.t5xxl_path
AE_PATH = args.ae_path
SAMPLE_IMAGES_FILE = args.sample_images_file
SAMPLE_PROMPTS_FILE = args.sample_prompts_file
OUTPUT_DIR = args.output_dir
with open(SAMPLE_IMAGES_FILE, "r", encoding="utf-8") as f:
image_lines = f.readlines()
sample_images = [line.strip() for line in image_lines if line.strip() and not line.strip().startswith("#")]
sample_prompts = train_util.load_prompts(SAMPLE_PROMPTS_FILE)
# Load models onto CUDA via Accelerator
_, [clip_l, t5xxl], ae, model = load_target_model(
fp8_base=True,
pretrained_model_name_or_path=BASE_FLUX_CHECKPOINT,
disable_mmap_load_safetensors=False,
clip_l_path=CLIP_L_PATH,
fp8_base_unet=False,
t5xxl_path=T5XXL_PATH,
ae_path=AE_PATH,
weight_dtype=torch.bfloat16,
accelerator=accelerator
)
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# LoRA
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
True)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
lora_model.to("cuda")
# Set text encoders
text_encoder = [clip_l, t5xxl]
sample(args, accelerator, vae=ae, text_encoder=text_encoder, flux=model, output_dir=OUTPUT_DIR,
sample_images=sample_images, sample_prompts=sample_prompts)
if __name__ == "__main__":
args = setup_argparse()
main(args)
|