File size: 16,134 Bytes
c1bc1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import argparse
import copy
import math
import random
from typing import Any
import pdb
import os

import time
from PIL import Image, ImageOps

import torch
from accelerate import Accelerator
from library.device_utils import clean_memory_on_device
from safetensors.torch import load_file
from networks import lora_flux

from library import flux_models, flux_train_utils_recraft as flux_train_utils, flux_utils, sd3_train_utils, \
    strategy_base, strategy_flux, train_util
from torchvision import transforms
import train_network
from library.utils import setup_logging
from diffusers.utils import load_image
import numpy as np

setup_logging()
import logging

logger = logging.getLogger(__name__)


def load_target_model(
        fp8_base: bool,
        pretrained_model_name_or_path: str,
        disable_mmap_load_safetensors: bool,
        clip_l_path: str,
        fp8_base_unet: bool,
        t5xxl_path: str,
        ae_path: str,
        weight_dtype: torch.dtype,
        accelerator: Accelerator
):
    # Determine the loading data type
    loading_dtype = None if fp8_base else weight_dtype

    # Load the main model to the accelerator's device
    _, model = flux_utils.load_flow_model(
        pretrained_model_name_or_path,
        # loading_dtype,
        torch.float8_e4m3fn,
        # accelerator.device,  # Changed from "cpu" to accelerator.device
        "cpu",
        disable_mmap=disable_mmap_load_safetensors
    )

    if fp8_base:
        # Check dtype of the model
        if model.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
            raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
        elif model.dtype == torch.float8_e4m3fn:
            logger.info("Loaded fp8 FLUX model")

    # Load the CLIP model to the accelerator's device
    clip_l = flux_utils.load_clip_l(
        clip_l_path,
        weight_dtype,
        # accelerator.device,  # Changed from "cpu" to accelerator.device
        "cpu",
        disable_mmap=disable_mmap_load_safetensors
    )
    clip_l.eval()

    # Determine the loading data type for T5XXL
    if fp8_base and not fp8_base_unet:
        loading_dtype_t5xxl = None  # as is
    else:
        loading_dtype_t5xxl = weight_dtype

    # Load the T5XXL model to the accelerator's device
    t5xxl = flux_utils.load_t5xxl(
        t5xxl_path,
        loading_dtype_t5xxl,
        # accelerator.device,  # Changed from "cpu" to accelerator.device
        "cpu",
        disable_mmap=disable_mmap_load_safetensors
    )
    t5xxl.eval()

    if fp8_base and not fp8_base_unet:
        # Check dtype of the T5XXL model
        if t5xxl.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
            raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
        elif t5xxl.dtype == torch.float8_e4m3fn:
            logger.info("Loaded fp8 T5XXL model")

    # Load the AE model to the accelerator's device
    ae = flux_utils.load_ae(
        ae_path,
        weight_dtype,
        # accelerator.device,  # Changed from "cpu" to accelerator.device
        "cpu",
        disable_mmap=disable_mmap_load_safetensors
    )

    # # Wrap models with Accelerator for potential distributed setups
    # model, clip_l, t5xxl, ae = accelerator.prepare(model, clip_l, t5xxl, ae)

    return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model


import torchvision.transforms as transforms


class ResizeWithPadding:
    def __init__(self, size, fill=255):
        self.size = size
        self.fill = fill

    def __call__(self, img):
        if isinstance(img, np.ndarray):
            img = Image.fromarray(img)
        elif not isinstance(img, Image.Image):
            raise TypeError("Input must be a PIL Image or a NumPy array")

        width, height = img.size

        if width == height:
            img = img.resize((self.size, self.size), Image.LANCZOS)
        else:
            max_dim = max(width, height)

            new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
            new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))

            img = new_img.resize((self.size, self.size), Image.LANCZOS)

        return img


def sample(args, accelerator, vae, text_encoder, flux, output_dir, sample_images, sample_prompts):
    def encode_images_to_latents(vae, images):
        # Get image dimensions
        b, c, h, w = images.shape
        num_split = 2 if args.frame_num == 4 else 3
        # Split the image into three parts
        img_parts = [images[:, :, :, i * w // num_split:(i + 1) * w // num_split] for i in range(num_split)]
        # Encode each part
        latents = [vae.encode(img) for img in img_parts]
        # Concatenate latents in the latent space to reconstruct the full image
        latents = torch.cat(latents, dim=-1)
        return latents

    def encode_images_to_latents2(vae, images):
        latents = vae.encode(images)
        return latents

    # Directly use precomputed conditions
    conditions = {}
    with torch.no_grad():
        for image_path, prompt_dict in zip(sample_images, sample_prompts):
            prompt = prompt_dict.get("prompt", "")
            if prompt not in conditions:
                logger.info(f"Cache conditions for image: {image_path} with prompt: {prompt}")
                resize_transform = ResizeWithPadding(size=512, fill=255) if args.frame_num == 4 else ResizeWithPadding(size=352, fill=255)
                img_transforms = transforms.Compose([
                    resize_transform,
                    transforms.ToTensor(),
                    transforms.Normalize([0.5], [0.5]),
                ])
                # Load and preprocess image
                image = img_transforms(np.array(load_image(image_path), dtype=np.uint8)).unsqueeze(0).to(
                    # accelerator.device,  # Move image to CUDA
                    vae.device,
                    dtype=vae.dtype
                )
                latents = encode_images_to_latents2(vae, image)

                # Log the shape of latents
                logger.debug(f"Encoded latents shape for prompt '{prompt}': {latents.shape}")
                # Store conditions on CUDA
                # conditions[prompt] = latents[:,:,latents.shape[2]//2:latents.shape[2], :latents.shape[3]//2].to("cpu")
                conditions[prompt] = latents.to("cpu")

    sample_conditions = conditions

    if sample_conditions is not None:
        conditions = {k: v for k, v in sample_conditions.items()}  # Already on CUDA

    sample_prompts_te_outputs = {}  # key: prompt, value: text encoder outputs
    text_encoder[0].to(accelerator.device)
    text_encoder[1].to(accelerator.device)

    tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
    text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)

    with accelerator.autocast(), torch.no_grad():
        for prompt_dict in sample_prompts:
            for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
                if p not in sample_prompts_te_outputs:
                    logger.info(f"Cache Text Encoder outputs for prompt: {p}")
                    tokens_and_masks = tokenize_strategy.tokenize(p)
                    sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
                        tokenize_strategy, text_encoder, tokens_and_masks, True
                    )

    logger.info(f"Generating image")
    save_dir = output_dir
    os.makedirs(save_dir, exist_ok=True)

    with torch.no_grad(), accelerator.autocast():
        for prompt_dict in sample_prompts:
            sample_image_inference(
                args,
                accelerator,
                flux,
                text_encoder,
                vae,
                save_dir,
                prompt_dict,
                sample_prompts_te_outputs,
                None,
                conditions
            )

    clean_memory_on_device(accelerator.device)


def sample_image_inference(
        args,
        accelerator: Accelerator,
        flux: flux_models.Flux,
        text_encoder,
        ae: flux_models.AutoEncoder,
        save_dir,
        prompt_dict,
        sample_prompts_te_outputs,
        prompt_replacement,
        sample_images_ae_outputs
):
    # Extract parameters from prompt_dict
    sample_steps = prompt_dict.get("sample_steps", 20)
    width = prompt_dict.get("width", 1024) if args.frame_num == 4 else prompt_dict.get("width", 1056)
    height = prompt_dict.get("height", 1024) if args.frame_num == 4 else prompt_dict.get("height", 1056)
    scale = prompt_dict.get("scale", 1.0)
    seed = prompt_dict.get("seed")
    prompt: str = prompt_dict.get("prompt", "")

    if prompt_replacement is not None:
        prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])

    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
    else:
        # True random sample image generation
        torch.seed()
        torch.cuda.seed()

    # Ensure height and width are divisible by 16
    height = max(64, height - height % 16)
    width = max(64, width - width % 16)
    logger.info(f"prompt: {prompt}")
    logger.info(f"height: {height}")
    logger.info(f"width: {width}")
    logger.info(f"sample_steps: {sample_steps}")
    logger.info(f"scale: {scale}")
    if seed is not None:
        logger.info(f"seed: {seed}")

    # Encode prompts
    # Assuming that TokenizeStrategy and TextEncodingStrategy are compatible with Accelerator
    text_encoder_conds = []
    if sample_prompts_te_outputs and prompt in sample_prompts_te_outputs:
        text_encoder_conds = sample_prompts_te_outputs[prompt]
        logger.info(f"Using cached text encoder outputs for prompt: {prompt}")

    if sample_images_ae_outputs and prompt in sample_images_ae_outputs:
        ae_outputs = sample_images_ae_outputs[prompt]
    else:
        ae_outputs = None

    # ae_outputs = torch.load('ae_outputs.pth', map_location='cuda:0')

    # text_encoder_conds = torch.load('text_encoder_conds.pth', map_location='cuda:0')
    l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds

    # 打印调试信息
    logger.debug(
        f"l_pooled shape: {l_pooled.shape}, t5_out shape: {t5_out.shape}, txt_ids shape: {txt_ids.shape}, t5_attn_mask shape: {t5_attn_mask.shape}")

    # 采样图像
    weight_dtype = ae.dtype  # TODO: give dtype as argument
    packed_latent_height = height // 16
    packed_latent_width = width // 16

    # 打印调试信息
    logger.debug(f"packed_latent_height: {packed_latent_height}, packed_latent_width: {packed_latent_width}")

    # 准备噪声张量在 CUDA 上
    noise = torch.randn(
        1,
        packed_latent_height * packed_latent_width,
        16 * 2 * 2,
        device=accelerator.device,
        dtype=weight_dtype,
        generator=torch.Generator(device=accelerator.device).manual_seed(seed) if seed is not None else None,
    )

    timesteps = flux_train_utils.get_schedule(sample_steps, noise.shape[1], shift=True)  # FLUX.1 dev -> shift=True
    img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(
        accelerator.device, dtype=weight_dtype
    )
    t5_attn_mask = t5_attn_mask.to(accelerator.device)

    clip_l, t5xxl = text_encoder
    # ae.to("cpu")
    clip_l.to("cpu")
    t5xxl.to("cpu")

    clean_memory_on_device(accelerator.device)
    flux.to("cuda")

    for param in flux.parameters():
        param.requires_grad = False

    # 执行去噪
    with accelerator.autocast(), torch.no_grad():
        x = flux_train_utils.denoise(args, flux, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps,
                                     guidance=scale, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs)

    # 打印x的形状
    logger.debug(f"x shape after denoise: {x.shape}")

    x = x.float()
    x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)

    # 将潜在向量转换为图像
    # clean_memory_on_device(accelerator.device)
    ae.to(accelerator.device)
    with accelerator.autocast(), torch.no_grad():
        x = ae.decode(x)
    ae.to("cpu")
    clean_memory_on_device(accelerator.device)

    x = x.clamp(-1, 1)
    x = x.permute(0, 2, 3, 1)
    image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])

    # 生成唯一的文件名
    ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
    seed_suffix = "" if seed is None else f"_{seed}"
    i: int = prompt_dict.get("enum", 0)  # Ensure 'enum' exists
    img_filename = f"{ts_str}{seed_suffix}_{i}.png"  # Added 'i' to filename for uniqueness
    image.save(os.path.join(save_dir, img_filename))


def setup_argparse():
    parser = argparse.ArgumentParser(description="FLUX-Controlnet-Inpainting Inference Script")

    # Paths
    parser.add_argument('--base_flux_checkpoint', type=str, required=True,
                        help='Path to BASE_FLUX_CHECKPOINT')
    parser.add_argument('--lora_weights_path', type=str, required=True,
                        help='Path to LORA_WEIGHTS_PATH')
    parser.add_argument('--clip_l_path', type=str, required=True,
                        help='Path to CLIP_L_PATH')
    parser.add_argument('--t5xxl_path', type=str, required=True,
                        help='Path to T5XXL_PATH')
    parser.add_argument('--ae_path', type=str, required=True,
                        help='Path to AE_PATH')
    parser.add_argument('--sample_images_file', type=str, required=True,
                        help='Path to SAMPLE_IMAGES_FILE')
    parser.add_argument('--sample_prompts_file', type=str, required=True,
                        help='Path to SAMPLE_PROMPTS_FILE')
    parser.add_argument('--output_dir', type=str, required=True,
                        help='Directory to save OUTPUT_DIR')
    parser.add_argument('--frame_num', type=int, choices=[4, 9], required=True,
                        help="The number of steps in the generated step diagram (choose 4 or 9)")

    return parser.parse_args()


def main(args):
    accelerator = Accelerator(mixed_precision='bf16', device_placement=True)

    BASE_FLUX_CHECKPOINT = args.base_flux_checkpoint
    LORA_WEIGHTS_PATH = args.lora_weights_path
    CLIP_L_PATH = args.clip_l_path
    T5XXL_PATH = args.t5xxl_path
    AE_PATH = args.ae_path

    SAMPLE_IMAGES_FILE = args.sample_images_file
    SAMPLE_PROMPTS_FILE = args.sample_prompts_file
    OUTPUT_DIR = args.output_dir

    with open(SAMPLE_IMAGES_FILE, "r", encoding="utf-8") as f:
        image_lines = f.readlines()
    sample_images = [line.strip() for line in image_lines if line.strip() and not line.strip().startswith("#")]

    sample_prompts = train_util.load_prompts(SAMPLE_PROMPTS_FILE)

    # Load models onto CUDA via Accelerator
    _, [clip_l, t5xxl], ae, model = load_target_model(
        fp8_base=True,
        pretrained_model_name_or_path=BASE_FLUX_CHECKPOINT,
        disable_mmap_load_safetensors=False,
        clip_l_path=CLIP_L_PATH,
        fp8_base_unet=False,
        t5xxl_path=T5XXL_PATH,
        ae_path=AE_PATH,
        weight_dtype=torch.bfloat16,
        accelerator=accelerator
    )

    model.eval()
    clip_l.eval()
    t5xxl.eval()
    ae.eval()

    # LoRA
    multiplier = 1.0
    weights_sd = load_file(LORA_WEIGHTS_PATH)
    lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
                                                          True)

    lora_model.apply_to([clip_l, t5xxl], model)
    info = lora_model.load_state_dict(weights_sd, strict=True)
    logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
    lora_model.eval()
    lora_model.to("cuda")

    # Set text encoders
    text_encoder = [clip_l, t5xxl]

    sample(args, accelerator, vae=ae, text_encoder=text_encoder, flux=model, output_dir=OUTPUT_DIR,
           sample_images=sample_images, sample_prompts=sample_prompts)


if __name__ == "__main__":
    args = setup_argparse()

    main(args)